SUBJECT CODE: 11MT/PC/CA34

M. Sc. DEGREE EXAMINATION, NOVEMBER 2015
 BRANCH I - MATHEMATICS
 THIRD SEMESTER

COURSE : CORE
PAPER : COMPLEX ANALYSIS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

1. State the general statement of Cauchy Theorem explaining a cycle.
2. Prove that any harmonic function which depends only on r is of the form $a \log r+b$ where a and b are constants.
3. Prove that $\zeta(s) \Gamma(s)=\int_{0}^{\infty} \frac{x^{s-1}}{e^{x}-1} d x$.
4. State True of False and justify your answer with a suitable example : " The derivatives of a normal family form a normal family ".
5. When do we say $\phi(t)$ determines an analytic arc.

SECTION -B

ANSWER ANY FIVE QUESTIONS:

$$
(5 \times 6=30)
$$

6. Prove that a region Ω is simply connected if and only if $n(\gamma, a)=0$ for all cycles γ in Ω and all points a which do not belong to Ω.
7. Prove that a non constant harmonic function has neither a maximum nor a minimum in its region of definition.
8. Obtain a product representation of Sintz.
9. Deduce Legendre's duplication formula using the relation $\xi(s)=\xi(1-s)$ where $\xi(s)=\frac{1}{2} s(1-s) \Pi^{\frac{-s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)$.
10. Prove that a family \mathfrak{J} is normal if and only if its closure $\overline{\mathfrak{J}}$ with respect to the distance function $\rho(f, g)=\sum_{k=1}^{\infty} \delta_{k}(f, g) 2^{-k}$ is compact.
11. Show that convergence with respect to ρ is equivalent to uniform convergence on all compact sets.
12. Prove that the functions $z=F(w)$ which map $|w|<1$ conformally onto polygons with angles $\alpha_{k} \pi(k=1,2, \ldots \ldots . . n)$ are of the form $F(w)=C \int_{0}^{w} \prod_{k=1}^{n}\left(w-w_{k}\right)^{-\beta_{k}} d w+C^{\prime}$, where $\beta_{k}=1-\alpha_{k}, w_{k}$ are points on the unit circle and C and C^{\prime} are complex constants.

SECTION - C

ANSWER ANY THREE QUESTIONS:

$$
(3 \times 20=60)
$$

13. (a) State and prove Cauchy's Theorem for a Rectangle.
(b) If the piecewise differentiable closed curve γ does not pass through the point a then, prove that the value of the integral $\int_{\gamma} \frac{d z}{z-a}$ is a multiple of $2 \pi i$.
14. (a) Suppose that $u(z)$ is harmonic for $|\mathrm{z}|<\mathrm{R}$, continuous for $|z| \leq R$, prove that $u(a)=\frac{1}{2 \pi} \int_{|z|=R} \frac{R^{2}-|a|^{2}}{|z-a|^{2}} u(z) d \theta$ for all $|a|<R$.
(b) State and prove Jensen's formula.
15. (a) For $\sigma=\operatorname{Re}(s)>1$, prove that $\zeta(s)=-\frac{\Gamma(1-s)}{2 \pi i} \int \frac{(-z)^{s-1}}{e^{z}-1} d z$, where $(-z)^{s-1}$ is defined on the complement of the positive real axis as $e^{(s-1) \log (-z)}$ with $-\pi<\operatorname{Im} \log (-z)<\pi$.
(b) Prove that $\zeta(s)=2^{s} \Pi^{s-1} \operatorname{Sin} \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s)$.
16. State and prove Arzela Ascoli theorem.
17. State and prove Riemann Mapping theorem.
