SUBJECT CODE: 11EC/PE/MM34

M.A. DEGREE EXAMINATION NOVEMBER 2015
 BRANCH III-ECONOMICS
 THIRD SEMESTER

COURSE : ELECTIVE
 PAPER : MATHEMATICAL METHODS
 TIME : 3 HOURS

MAX. MARKS: 100

SECTION - A

ANSWER ANY FIVE QUESTIONS:

1. The market demand function of a firm is given by $8 \mathrm{P}+\mathrm{Q}-64=0$ and the firm's average cost function takes the form $\mathrm{AC}=(8 / \mathrm{Q})+6-0.4 \mathrm{Q}+0.08 \mathrm{Q}^{2}$ Find the level of output and price which maximizes profit.
2. Prove that Cobb Douglas production function satisfies Euler's theorem.
3. Prove Cayley - Hamilton's Theorem for the given matrix $\left[\begin{array}{ccc}3 & 0 & 4 \\ 1 & 1 & 2 \\ 1 & -2 & 2\end{array}\right]$
4. Find the general solution of the differential equation.
$\frac{d y}{d t}+4 \mathrm{y}=12$.
5. Explain Harrod Domar growth model with differential equations.
6. Solve the difference equation $\mathrm{Y}_{\mathrm{t}}=6 \mathrm{Y}_{\mathrm{t}-1}$.
a) Check the answer using $t=0$ and $t=1$
b) Comment on the nature of the time path.
7. Solve the Solve the following Linear Programming problem by graphical method.

Maximise	$\pi=25 \mathrm{x}+35 \mathrm{y}$	
Subject To	$4 \mathrm{x}+8 \mathrm{y}$	≤ 400
	$4 \mathrm{x}+4 \mathrm{y}$	≤ 280
	$6 \mathrm{x}+3 \mathrm{y}$	≤ 360
	$\mathrm{x} ; \mathrm{y}$	≥ 0

SECTION - B

ANSWER ANY THREE QUESTIONS:

$(3 \times 20=60)$
8. In monopolistic competition a producer facing the following demand functions for two different brand of a product:
$\mathrm{Q}_{1}=14-0.25 \mathrm{P}_{1}$ and $\mathrm{Q}_{2}=24-0.5 \mathrm{P}_{2}$ and the joint cost function is $\mathrm{TC}=\mathrm{Q}_{1}{ }^{2}+\mathrm{Q}_{1} \mathrm{Q}_{2}+\mathrm{Q}_{2}{ }^{2}$.
Find the profit maximizing levels of price and output under
a) Price discrimination
b) No price discrimination.
9. Determine the total demand for industries 1,2 , and 3 , given the matrix of technical co efficient A and the Final demand vector F below:

$$
A=\left[\begin{array}{lll}
0.4 & 0.3 & 0.1 \\
0.2 & 0.2 & 0.3 \\
0.2 & 0.4 & 0.2
\end{array}\right] \quad \text { and } \quad F=\left[\begin{array}{l}
140 \\
220 \\
180
\end{array}\right]
$$

10. Solve the following Linear Programming problem by Simplex method.

Maximize	$\pi=30 x+24 y+60$
Subject to	$\left.\begin{array}{rl}6 x+3 y+5 z & \leq 30 \\ 2 x+2 y+10 z & \leq 50 \\ & x ; y ; z\end{array}\right\} 0$

11. Given the demand function and supply function of a firm respectively.

$$
\mathrm{P}=113-\mathrm{Q}^{2} \quad \text { and } \quad \mathrm{p}=(\mathrm{Q}+1)^{2}
$$

Find a) consumers' surplus and b) producers' surplus.
12. Describe Samuelson's multiplier with second order difference equations.

