STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2008–09)

SUBJECT CODE: CH/PC/MS34

M.Sc. DEGREE EXAMINATION, NOVEMBER 2009 BRANCH IV- CHEMISTRY THIRD SEMESTER

	REG.NO RSE : CORE							
PAP TIM	ER: MOLECULAR SPECTROSCOPYE: 30 MINUTESMAX.MARKS : 20							
SECTION – A (20x1=20) Answer all the questions: I Choose the correct answer:								
01.	The wavelength (in metres) of microwave energy is							
	a) 10^2 b) 10^{-11} c) 10^{-3} d) 10^6							
02.	The Hooke's law is given by							
	a) $v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$ b) $v = \frac{h}{2\pi c} \sqrt{\frac{k}{\mu}}$ c) $v = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$ d) $v = \frac{h}{2\pi} \sqrt{\frac{k}{\mu}}$							
03.	The IR vibrational stretching frequency for $C \equiv C$ is							
	a) 3430 cm^{-1} b) 2980 cm^{-1} c) 2350 cm^{-1} d) 1785 cm^{-1}							
04.	Rayleigh scattering is associated witha) ESR spectroscopyb) IR spectroscopyc) Raman spectroscopyd) Rotational spectroscopy							
05.	NMR active nucleus containsa) odd mass and even atomic numbersb) odd atomic and even mass numbersc) even atomic and even mass numbersd) all the above							
06.	The ε of charge transfer transition is a) higher than π - π * transition b) lower than d-d transitions c) lower than π - π * transition d) none of the above							
07.	The presence of NO2+ ion in nitration reactions is suitably confirmed bya) NMR spectroscopyb) Raman spectroscopyc) ESR spectroscopyd) all the above							
08.	The identification of correct species from mass spectral pattern is helped out by a) Pascal's table b) Beynon's table c) Clarke's table d) none of the above							
09.	The Multiplicity of NMR lines obtained for CH ₃ -CH ₂ -CH ₂ -Cl is							
	a) 3,2,2 b) 3,4,3 c) 3,6,3 d) 4,3,3							
10.	The magnetic field ratio between 1 H and 13 C nuclei is							
	a) 1:1 b) 1:10 c) 1:20 d) 1:30							

II Fill in the blanks:

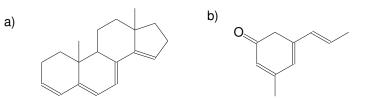
- 11. The expression for Beer-Lambert's law is _____
- 12. The IR energy range for v(C=N) is _____ cm⁻¹.
- 13. A complex proton NMR spectrum can be simplified by ______ technique.
- 14. The underlined proton in $CH_3CH_2 \frac{CH}{CH_3} Cl$ has the ______ δ value.
- 15. The double bond equivalence of C_4H_7ON is _____.

III Answer the questions in one or two lines:

- 16. State Born Oppenheimer approximation.
- 17. Define chemical shift.
- 18. What are Stoke's lines?
- 19. How is hyperchromic shift defined?
- 20. What is Mc Lafferty rearrangement?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI-86 (For candidates admitted during the academic year 2008–09) SUBJECT CODE: CH/PC/MS34 M.Sc. DEGREE EXAMINATION, NOVEMBER 2009 BRANCH IV- CHEMISTRY THIRD SEMESTER

: CORE	
: MOLECULAR SPECTROSCOPY	
: 2 ¹ / ₂ HOURS	MAX.MARKS: 80
	: MOLECULAR SPECTROSCOPY

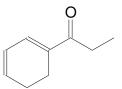

SECTION – B $(5 \times 8 = 40)$

(2,2,4)

Answer any five questions:

- a) Write the selection rules for microwave spectroscopy. (2)
 b) How the fundamental vibrational frequencies are affected by vibrational coupling and H-bonding? Explain with suitable examples. (3,3)
 a) How polarity of solvents affect the absorption spectrum of a chemical compound? Explain with specific examples. (4)
 b) Give any two applications of Raman spectroscopy. (4)
- 3. What are shift reagents? Why are they called so? Explain the function of a shift reagent.
- 4. Write a short note on the following. (3,2,3) a) Nitrogen rule
 - b) Pascal's triangle
 - c) Charge transfer transition

5. (A) Calculate the λ_{max} of the following compounds. (4,4)



(B) Discuss the mass spectrum of benzylchloride.

6. Identify the compounds from the following NMR spectral data. (4,4)

a) Mol. Formula: C ₈ H ₁₀ O			b) Mol. Form	b) Mol. Formula: C ₈ H ₁₈ O		
1.8 δ	3 H	singlet	1.2 δ	12 H	doublet	
2.3 δ	2 H	singlet	1.4 δ	2 H	multiplet	
7.8 δ	5 H	singlet	2.4 δ	4 H	doublet	

- 7. Draw various fragmentation patterns obtained for alcohols and ketones. (4,4)
- 8. Predict possible IR and UV spectral data for the following compound. (4,4)

(6)

SECTION – C
$$(2 \times 20 = 40)$$

Answer any two questions:

- 9. a) What are the limitations of microwave spectroscopy? (4)
 - b) Compare infrared and Raman spectroscopy.
 - c) Compare the electronic transitions in high and low spin Fe²⁺ complexes with suitable examples. (10)
- 10. a) Predict the possible NMR splitting pattern and mass spectral fragmentation data for the following compound. (10)

b) What are the factors influencing chemical shifts in NMR? Explain any two in detail with examples.

(10)

- 11. a) Propose a structure consistent with the following ${}^{1}H$ NMR spectral data. (5)
 - i, 2H, quintet, 2.15 ppm ii, 2H, triplet, 2.75 ppm iii, 2H, triplet, 3.38 ppm iv, 5H, singlet, 7.22 ppm
 - b) From the following spectral data (See ANNEXURE-1), identify the structure of the compound. The molecular formula of the compound is $C_9H_{10}O$. Give suitable explanation for your prediction. (15)

CH/PC/MS34