STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE : PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2008 BRANCH III - PHYSICS THIRD SEMESTER

			REG. No				
		HEMATICAL PHY		IAX. MARKS : 30			
		SECTION	$-\mathbf{A}$				
	TO BE ANSV	WERED IN THE QU	ESTION PAPE	R ITSELF			
	ANSWER ALL QU	JESTIONS:		(30 x 1 = 30)			
I	CHOOSE THE CORRECT ANSWER:						
1.		by $V = 2xyzi + (x^2z + 2zyzi)$ b) irrotational		d) a sink			
2.	The value of λ so th solenoidal vector is a) -2	at the vector $u = (x + b)$ 3	(3y)i + (y - 2z)j + c) 1	$(x + \lambda z)k$ is a d) 0			
3.	A necessary and sufficient condition that the integral $\int_{a} A dr = 0$ for every						
	curve C is that	b) $\operatorname{curl} A = 0$	-				
4.				d) $\nabla \times \nabla \times A = 0$			
5.	The poles of a funct	ion $f(z) = \int \frac{z+4}{z^2+2z+}$	-dz are				
		b) $-1 \pm 2i$		d) -2±2i			
6.	Cauchy – Riemann f(z)=u(x,y)+iv(x,y) a a) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \frac{\partial u}{\partial y} = \frac{-1}{\partial x}$ c) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}; \frac{\partial u}{\partial y} = \frac{-1}{\partial y}$	$\frac{\partial v}{\partial x}$	For an analytic function b) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}; \frac{\partial u}{\partial y}; \frac{\partial u}{\partial x}; \frac{\partial u}{\partial x}$	$\frac{u}{\partial y} = \frac{-\partial v}{\partial x}$			

- 7.In conformal mapping straight lines are mapped into
a) straight linesb) hyperbolasc) circlesd) ellipse
- 8. The constants c_1 and c_2 of the differential equation $y(x) = c_1 e^{2x} + c_2 e^x + 2\sin x$ satisfying the conditions y(0) = 0; $y^1(0) = 1$ are a) $c_1=1$; $c_2=1$ b) $c_1=-1$, $c_2=1$ c) $c_1=-1$; $c_2=-1$ d) $c_1=1$; $c_2=-1$
- 9. The graph for diffusion problem given by $\frac{dy}{dt} = k(a y)$ where 'y' is the concentration at any time 't' and 'a' is greater than the initial concentration is

- 10. Free undamped motion of a spring has
 - a) no air resistance and no external force
 - b) no air resistance but external force acts
 - c) both air resistance and external force
 - d) resistance due to air but no external force
- 11. An RL circuit represented by $E=RI+L\frac{dI}{dt}$ where I is the current at any time 't', the transient part of the current as 't' tends to ∞ a) approaches zero b) approaches a steady value c) tends to ∞ d) remains the same independent of 't'
- 12. The Rodrigue's formula for $P_n(x)$, the Legendre polynomial of degree 'n' is $P(x) = k \frac{d^n}{d^n} \left[(x^2 - 1)^n \right]$ where 'k' is given by

a)
$$\frac{n!}{2^n}$$
 b) $\frac{2^n}{n!}$ c) $\frac{1}{2^n n!}$ d) $\frac{1}{2^n (n!)^2}$

13.
$$\beta(x+1, y)$$
 is given by
a) $\frac{x+y}{x}\beta(x, y)$ b) $\frac{y}{x+y}\beta(x, y)$ c) $\frac{x+y}{y}\beta(x, y)$ d) $\frac{x}{x+y}\beta(x, y)$

PH/MC/MP34

$\Gamma(1)$ is given by	1)		1) 1			
a) 0	b) ∞	c) √11	d) 1			
$\beta(1,2)$ is equal to a) $\frac{1}{2}$	b) 2	C) - ½	d) -2			
FILL IN THE BLANKS:						
The value of the lines integral $\int_{c} y^2 dx + x^2 dy$ where c is the boundary of the square $- \le x^2 < 1, -1 \le y < 1$ is						
The directional derivative of a scalar ϕ in the direction of a vector is						
If a function is analytic at all points inside a circle it can be expanded by series.						
Mdx + Ndy is an exact differential equation if						
$\int_{-1}^{+1} P_0(x) dx = $ where $P_0(x)$ is Legendre polynomial of degree n.						
STATE WHETHER TRUE OR FALSE:						
For every vector field V, div curl $V = 0$.						
$\int_{c} \frac{dz}{z^2 - 1}$ where c is a circle $x^2 + y^2 = 4$ is $2\pi i$						
The method of carbon dating makes use of first order differential equation.						
$\beta(m,n) = -\beta(n,m)$						
As 'x' increases the Legendre polynomial $P_1(x)$ also increases.						
ANSWER BRIEFLY:						
State Stoke's theorem.						
	a) 0 $\beta(1,2)$ is equal to a) $\frac{1}{2}$ FILL IN THE BLA The value of the line square $-\leq x^2 < 1, -1$ The directional derivation If a function is analy \dots set Mdx + Ndy is an ex- $\int_{-1}^{+1} P_0(x) dx = $ STATE WHETHE For every vector field $\int_{c} \frac{dz}{z^2 - 1}$ where c is The method of carb $\beta(m, n) = -\beta(n, m)$ As 'x' increases the ANSWER BRIEFI	a) 0 b) ∞ $\beta(1,2)$ is equal to a) $\frac{1}{2}$ b) 2 FILL IN THE BLANKS: The value of the lines integral $\int y^2 dx + x$ square $-\leq x^2 < 1, -1 \leq y < 1$ is The directional derivative of a scalar ϕ in If a function is analytic at all points inside 	a) 0 b) ∞ c) $\sqrt{\Pi}$ $\beta(1,2)$ is equal to a) $\frac{1}{2}$ b) 2 c) $-\frac{1}{2}$ FILL IN THE BLANKS: The value of the lines integral $\int y^2 dx + x^2 dy$ where c is the box square $-\leq x^2 < 1, -1 \leq y < 1$ is The directional derivative of a scalar ϕ in the direction of a vec If a function is analytic at all points inside a circle it can be exp series. Mdx + Ndy is an exact differential equation if $\int_{-1}^{+1} P_0(x) dx =$ where $P_0(x)$ is Legendre polyn STATE WHETHER TRUE OR FALSE: For every vector field V, div curl V = 0. $\int \frac{dz}{z^2 - 1}$ where c is a circle $x^2 + y^2 = 4$ is $2\pi i$ The method of carbon dating makes use of first order different $\beta(m,n) = -\beta(n,m)$ As 'x' increases the Legendre polynomial $P_1(x)$ also increases. ANSWER BRIEFLY:			

27. What is Cauchy's integral formula?

- 28. Define order and degree of a differential equation.
- 29. Apply Kirchoff's voltage law to form the differential equation for an inductance Resistance (LR) series circuit with the voltage source 'E' at any time 't'.
- 30. State gamma and beta functions.

$\times \times \times \times \times \times \times$

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE : PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2008 BRANCH III - PHYSICS THIRD SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	MATHEMATICAL PHYSICS	
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS : 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Find the directional derivative of the scalar function $\phi = 4e^{(2x-y+z)}$ at the point (1,1,-1) in a direction towards the point (-3,5,6).
- 2. Evaluate $\lim_{v} \iiint (x^2 + y^2 + z^2) dx dy dz$ where v is a sphere having center at the origin and radius equal to 'a'.
- 3. Determine the analytic function f(z)=u+iv where v=6xy-5x+3 using Cauchy Reimann equation. Express the result as a function of 'z'.
- 4. An RC circuit has an emf of 5volts, a resistance of 10 ohms, a capacitance of 10^{-2} Farad and initially a charge of 5 coulombs on the capacitor. Find (a) the transient Current and (b) the steady state current.
- 5. A tank contains 100 litres of brine solution containing 20gms of salt. At t=0 fresh water is poured into the tank at the rate of 5 litres/min while the well stirred mixture leaves the tank at the same rate. Find the amount of salt in the tank at any time 't'.
- 6. Express $1+x x^2$ in terms of Legendre polynomial.
- 7. Evaluate the integral $\int_{0}^{\infty} x^{\frac{5}{4}} e^{-\sqrt{x}} dx.$

SECTION – C

ANSWER ANY THREE QUESTIONS:

 $(15 \times 3 = 45)$

- 8. a) State and prove Gauss' divergence theorem.
 - b) Use the above theorem to solve $\int_{s} \int A ds$ where $A = x^{2}i + y^{2}j + z^{2}k$ taken over the cube $0 \le x, y, z \le 1$.

9. a) Find a unit vector perpendicular to the surface $x^2 + y^2 - z^2 = 1$ at the point (4, 2, 3).

b) If A =
$$5t^2i + tj - t^2k$$
 and B = sin ti - cos t j find $\frac{d}{dt}(AxB)$.

- 10. a) Determine whether the differential equation $(x + \sin y)dx + (x \cos y 2y)dy=0$ is exact. Hence solve the equation.
 - b) Assume Newton's law of cooling to solve the following problem: A body cools from 60°C to 50°C in 15 minutes in air which is maintained at 30°C. How long will it take this body to cool from 100°C to 80°C in air which is maintained at 50°C?
- 11. a) Solve $y''-2y'+y=3e^x$.
 - b) A 10 kg mass is attached to a spring, stretching it 0.7m from its natural length. The mass is started in motion from the equilibrium position with an initial velocity of 1m/sec in the upward direction. Find the subsequent motion, if the

force due to air resistance is 90 x Newtons.

12. a) Derive the relation between beta and gamma function.

b) Solve
$$\int_{-1}^{+1} \frac{(1+x)^{\frac{1}{2}}}{(1-x)\frac{1}{2}} dx$$

$$\times \times \times \times \times \times \times$$