STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086
(For candidates admitted during the academic year 2008-09)

SUBJ ECT CODE : MT/ MC/ CG12

B. Sc. DEGREE EXAMI NATI ON, NOVEMBER 2008
 BRANCH I - MATHEMATI CS
 FI RST SEMESTER

COURSE : MAJOR - CORE
PAPER : CO-ORDI NATE GEOMETRY OF TWO DI MENSI ONS
TI ME
MAX. MARKS : 100

SECTION - A

$(10 \times 2=20)$

ANSWER ANY TEN QUESTI ONS

1. Give the general second degree equation which represents a conic. Under what condition this equation will represent a parabola?
2. Define the center of a conic.
3. Find the nature of the conic $17 x^{2}-12 x y+8 y^{2}+46 x-28 y+17=0$.
4. Find the equation of the parabola whose focus is $(1,-1)$ and the directrix is $x+y+7=0$.
5. What is the equation to the parabola if the axis is taken as the X -axis and the directrix as the Y -axis?
6. Derive the latusrectum of a parabola.
7. Define the conjugate diameters of the ellipse.
8. Show that the sum of the squares of two conjugate semi diameters of an ellipse is a constant.
9. Find the angle between the asymptotes of the hyperbola.
10. Find the asymptotes of the hyperbola $3 x^{2}-5 x y-2 y^{2}+17 x+y=14=0$.
11. Define the conjugate diameters of the hyperbola.
12. Define a rectangular hyperbola. Give its standard form and parametric representation.

SECTION - B
$(4 \times 20=80)$

ANSWER ANY FOUR QUESTI ONS

13. Prove that the general second degree equation will represent a conic.
14. a) Find the centre of the conic given by the general second degree equation.
b) Show that the conic given by $x^{2}-3 x y+y^{2}+10 x-10 y+21=0$ is a hyperbola. Find the coordinates of its centre. If the origin is shifted to the centre find the equation.
15. a) Find the equation to the parabola whose focus is at the point (α, β) and show that the directrix is the straight line $l x+m y+n=0$.
b) Find the focus, vertex and directrix of the parabola $y^{2}-2 x-6 y+5=0$.
c) Prove that in an ellipse, the tangents at the extremities of a chord will intersect on the diameter bisecting the chord.

$$
(6+7+7)
$$

16. a) Prove that the tangents at the ends of a pair of conjugate diameters of an ellipse form a parallelogram of constant area.
b) Prove that the acute angle between two conjugate diameters of an ellipse is minimum when they are equal.
c) If P and D are extremities of conjugate diameter of ellipse, show that the locus of the middle point of PD is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{2}$.
17. a) Prove that the polar of any point in an asymptote of a hyperbola with respect to the hyperbola is parallel to the asymptote.
b) If a straight line cuts a hyperbola in P and Q and its asymptotes in R and S then prove that $\mathrm{PR}=\mathrm{QS}$.
c) If e and e_{1} are the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e^{2}}+\frac{1}{e_{1}^{2}}=1$.

$$
(7+7+6)
$$

18. a) Prove that the tangent to a rectangular hyperbola terminated by its asymptotes is bisected at the point of contact and encloses triangle of constant area.
b) Prove that the orthocentre of a triangle inscribed in a rectangular hyperbola lies on the rectangular hyperbola.
c) Find the equation to the normal to the rectangular hyperbola $x y=c^{2}$ at the point ' t '.

$$
(7+7+6)
$$

