STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE : MT/MC/AS54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE	: MAJOR – CORE	
PAPER	: ALGEBRAIC STRUCTURES	
TIME	: 3 HOURS	MAX. MARKS :

SECTION – A

(10 X 2 = 20)

100

ANSWER ALL THE QUESTIONS

- 1. Define an abelian group. Give an example.
- 2. Prove that for all $a \in G$ (G is a group) $(a^{-1})^{-1} = a$.
- 3. State left and right Cancellation Laws.
- 4. Prove that intersection of two subgroups of a group is again a subgroup.
- 5. Define a commutative ring.
- 6. If $\phi : R \to R'$ is a ring homomorphism, then prove that $\phi(0) = 0$.
- 7. If $\phi: G \to G'$ be a group homomorphism, then prove that $Ker\phi$ is a normal subgroup.
- 8. Define maximal ideal of a ring.
- 9. Define order of an element in a group G.
- 10. If *R* is a commutative ring and $a \in R$. Prove that $aR = \{ar / r \in R\}$ is a two-sided ideal of *R*.

SECTION – B (5X8=40)

ANSWER ANY FIVE QUESTIONS

- 11. State and prove Lagrange's Theorem.
- 12. State and Prove Necessary and Sufficient Condition for a non-empty subset of a group G to become a subgroup of G.
- 13. If G is a finite group and $a \in G$, then prove that o(a) divides o(G).
- 14. Prove that N is a normal subgroup if and only if $gNg^{-1} = N$, for every $g \in G$.
- 15. Prove that every field is an integral domain.
- 16. Prove that a finite integral domain is a field.
- 17. If U is an ideal of R and $1 \in U$, prove that U = R.

$SECTION - C \qquad (2X20=40)$

ANSWER ANY TWO QUESTIONS

- 18. a) If *H* and *K* are finite subgroups of *G* of order o(H) and o(K) respectively, then prove that $o(HK) = \frac{o(H) \cdot o(K)}{o(H \cap K)}$ (10 marks)
 - b) Define center of a group G. Prove that the center of a group G is a normal subgroup of G. (10 marks)
- a) If \$\phi:G → G\$ is a group homomorphism of \$G\$ onto \$\bar{G}\$ with kernel \$K\$. Then prove that \$\begin{aligned} G & K & G\$ \$\overline{G}\$ \$\ove
 - c) Prove that only ideals of a field F are $\{0\}$ and F itself. (5 marks)
- 20. Prove that every integral domain can be imbedded in a field.
