STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE : MT/AC/NA33

100

B. Sc. DEGREE EXAMINATION, NOVEMBER 2008 BRANCH I - MATHEMATICS THIRD SEMESTER

COURSE	: ALLIED – CORE	
PAPER	: NUMERICAL ANALYSIS	
TIME	: 3 HOURS	MAX. MARKS :

SECTION – A (10 X 2 = 20)

ANSWER ALL THE QUESTIONS

- 1. Form a backward difference table for $f(x) = x x^2$, x = 0,1,2,3,4.
- 2. Show that $\mu\delta = \frac{\Delta + \nabla}{2}$.
- 3. What is the condition for convergence of Gauss-Jacobi method of iteration?
- 4. State Lagrange's interpolation formula.
- 5. Find the cubic polynomial, which takes the following values y(0) = 1, y(1) = 0, y(2) = 1, y(3) = 10.
- 6. State Trapezoidal rule for numerical integration.
- 7. State any two drawbacks of Euler's method.
- 8. State Runge-Kutta formula (fourth order).
- 9. State Stirling's formula.
- 10. State the fundamental theorem of difference calculus.

SECTION – B $(5 \times 8 = 40)$

ANSWER ANY FIVE QUESTIONS

- 11. Solve $x^3 9x + 1 = 0$ for a root between 2 and 4 using bisection method.
- 12. Use Stirling's formula to find y_{25} given $y_{20} = 512$, $y_{30} = 439$, $y_{40} = 346$, $y_{50} = 243$ where y_x represents the number of persons at age 'x' in life.
- 13. Find the polynomial which takes the following values.

	х	0	1	2	3
	f(x)	1	0	1	10
H	Hence or otherw	vise find f(4).			

14. The table indicates the velocity 'v' of a body during the time 't' specified . Find the acceleration when t = 1.3

t	1.0	1.1	1.2	1.3	1.4
V	43.1	47.7	52.1	56.4	60.8

/2/

- 15. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Simpson's $\frac{3}{8}^{th}$ rule by dividing the interval into 4 equal parts. Hence find the approx value of π .
- 16. Use Picards method to solve $\frac{dy}{dx} = 1 + xy$ with $x_0 = 2$, $y_0 = 0$ (use 3 approximations)
- 17. Estimate the production for 1964 and 1966 1961 1962 1963 1964 1965 1966 1967 Year Production 200 220 260 350 430

SECTION – C (2 X 20 = 40)

ANSWER ANY TWO QUESTIONS

18. a) Solve the system of equations using Gauss-Seidel method. 10x + 2y + z = 9

x + 10y - z = -22

2x + 3y + 10z = 22

- b) Derive Newton's Backward interpolation formula for equal arguments.
- 19. a) Use Euler's method with h = 0.1 to find the solution of the equation $\frac{dy}{dx} = x^2 + y^2$ with y(0) = 0 in the range $0 \le x \le 0.5$.
 - b) Use Lagrange's formula to prove $y_0 = \frac{1}{2}(y_1 + y_{-1}) - \frac{1}{8} \left[\frac{1}{2}(y_3 - y_1) - \frac{1}{2}(y_{-1} - y_{-3}) \right]$
- a) Apply R-K fourth order method to find an approximate value of 'y' for x = 0.2 in steps of 0.1 if dy/dx = x + y² given that y = 1 when x = 0.
 b) Using Trapezoidal rule evaluate ∫₀³ dx/(1+x). Hence computer log_e 2.