STELLA MARIS COLLEGE (AUTONOMOUS), CHENNAI - 600 086

(For candidates admitted during the academic year 2011 – 12& thereafter)

B.Sc/ B.A/ B.Com Degree End Semester Examination - April 2015

SUBJECT CODE: 11MT/GE/DM44

MAXIMUM MARKS: 100

COURSE : GENERAL ELECTIVE PAPER : DISCRETE MATHEMATICS TIME : 3 HOURS

SECTION – A (10 x2 = 20)

Answer ALL TheQuestions:

- 1. Verify whether $(P \lor Q) \lor (P \land Q)$ is a contradiction or tautology.
- 2. Determine the truth value of the following statement:

 $U = \{1, 2, 3, 4, 5\}; \exists x \forall y, 5x - y \le 15.$

- 3. Define a partially ordered set with an example.
- 4. What is Hasse diagram?
- 5. State the Duality and Idempotent laws in a lattice.
- 6. Let $N = \{1, 2, 3, ...\}$ be ordered by divisibility. State whether each of the following subsets of N are linearly ordered:

i) {2,4,18}; ii) {3,21,9};

- 7. Write the dual of each Boolean expression(a * 1) + (a' + 0) = a + b.
- 8. Write the output sequence *Y* for a NOT gate with input *A* where *A* is given as follows:i) 00111110; ii) 11100111;
- 9. Explain regular expressions and regular Languages.
- 10. What are Godel Numbers?

$SECTION - B \qquad (5 \times 8 = 40)$

Answer Any Five Questions:

- 11. a) State De Morgan's theorem.
 - b) Draw the truth table of $((p \rightarrow q) \land p) \rightarrow \neg q$. (2+6)

/2/

11MT/GE/DM44

12. Let $S = \{a, b, c, d, e\}$ be ordered as in the following Hasse Diagram.

- a) Find all minimal and maximal elements of S.
- b) Does *S* have a first element or a last element?
- c) Is *d* and *a* comparable?
- d) Is *c<b*?

13. a) Suppose the English Alphabet $A = \{a, b, c, d, ...\}$ is given the usual alphabetical order

and $A^2 = AxA$ is given the product order. Insert the correct symbol <, >or \prec , \succ or \parallel :

- i) *yd*_____us; ii) *gy*_____gt; iii) *ca*_____xc;
- b) Let C={1,2,..., 16} be ordered by divisibility. Draw the Hasse diagram for C and check whether it is a Poset. (3+5)
- 14. a) What are Isomorphic Lattices? Give an example.
 - b) Check whether the given Hasse diagram is Lattice.
 - c) If so determine whether it is distributive and bounded?
 - d) Identify the atoms in it.

- 15. Consider the Boolean Algebra D_{210} .
 - a) List its elements and draw its diagram.
 - b) Find the set of atoms.
 - c) Find a subalgebra with eight elements.
 - d) Is $X = \{1, 2, 7, 70\}$ a sublattice of D_{210} ?

11MT/GE/DM44

- 16. a) Consider the words u= a²b²a³ and v = bab³. Find uv and v².
 b) Explain Finite state Automata. (4+4)
- 17. Let *L* be the set of all words in *a* and *b* with an even number of *a*'s. Find a grammar G which will generate *L*.

SECTION – C (2 x 20 =40)

Answer Any Two Questions:

- 18. a) Determine the validity of the following argument: $(p \rightarrow q), \neg q \mapsto \neg p$.
 - b) Define the two quantifiers and Negate each of the following statements:

i)
$$(\exists z \in A)(z-3 < 8)$$
; ii) $(\forall x \in A)(27 - x^2 < 9)$
iii) $\exists x \forall y, q(x, y)$; iv) $\forall x \forall y \exists z, \neg p(x, y, z)$ (10+10)

- 19. a) Check whether the set Z of integers and Q set of rational numbers, with the usual order \leq , is linearly ordered and well ordered.
 - b) Let $T = \{2, 3, 6, 12, 24, 48\}$. *R* on $T = \{(x, y) \in \mathbb{R}, x \text{ divides } y\}$

i) Construct Hasse diagram.
ii) Find maximal and minimal element.
iii) Give chains and antichains.
iv)Find the maximal length of chains.
v) Is this poset a lattice? (10+10)

- 20. a) Explain the logical gates with an example and mention few of their applications.
 - b) If a Finite Automaton *M* is given by $M = (S, A, f, Y, s_0)$, where

 $S = \{s_0, s_1, s_2, s_3\}, A = \{0, 1\}, Y = \{s_0, s_2\}$ and f is given by the following table:

	0	1
S_0	\mathbf{S}_0	\mathbf{S}_1
S ₁	\mathbf{S}_1	S_2
S ₂	S_2	S_3
S ₃	S ₃	\mathbf{S}_0

Draw the state diagram and find the language of *M*.

(10+10)