SUBJECT CODE : 11MT/PE/TS24

M. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE	$:$ ELECTIVE
PAPER	$:$ TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITY
TIME	$: 3$ HOURS

SECTION -A

Answer all the questions:
$5 \times 2=10$

1. Write down the value of $A^{p} \cdot q$
2. Define Quotient Law.
3. Evaluate $\delta_{q}^{p} \delta_{r}^{q}$.
4. State the two basic postulates of special theory of relativity.
5. Define space like interval.

SECTION -B
Answer any five questions:
$5 \times 6=30$
6. Show that $\frac{\partial A_{p}}{\partial x^{q}}$ is not a tensor even though A_{p} is a covariant tensor of rank one.
7. Show that any inner product of the tensor A_{r}^{p} and $B_{t}^{q s}$ is a tensor of rank three.
8. Determine the metric tensor in cylindrical and spherical coordinates.
9. Find the covariant derivative of $A_{k}^{j} B_{n}^{l m}$ with respect to x^{q}.
10. If the covariant force acting on a particle is given by $F_{R}=\frac{-\partial V}{\partial x^{x}}$ where $V\left(x^{1}, \ldots, x^{N}\right)$ is the potential energy, then obtain the Lagrange's Equations.
11. Obtain Galilean transformation equation for velocity components and acceleration components.
12. Explain Longitudinal Contraction.

SECTION -C

Answer any three questions:

$3 \times 20=60$
13. A quantity $A(p, q, r)$ is such that in the coordinates system $x^{i}, a(p, q, r) B_{r}^{q s}=C_{p}^{s}$ where $B_{r}^{q s}$ is an arbitrary tensor and C_{p}^{s} is a tensor. Prove that $A(p, q, r)$ is a tensor and show that every tensor can be expressed as the sum of two tensor, one of which is symmetric and the other skew-symmetric in a pair of covariant a center variance indices.
14. a) Prove that $g_{21} G(3,1)+g_{22} G(3,2)+g_{23} G(3,3)=0$.
b) Derive the transformation laws for the Christoffel symbols of the second kind.
15. a) Show that the geodesics in a Riemannian space are given by

$$
\frac{d^{2} x^{r}}{d s^{2}}+\left\{\begin{array}{c}
r \\
p q
\end{array}\right\} \frac{d x^{p}}{d s} \frac{d x^{q}}{d s}=0 .
$$

b) Show that $A^{p}, q=\frac{\partial A^{p}}{\partial x^{q}}+\left\{\begin{array}{c}p \\ q s\end{array}\right\} A^{s}$ is tensor if A^{p} and is a tensor.
16. Obtain Lorentz Transformation Equations.
17. Explain Addition of Velocities and Time Dilation.

A A A A A A A A A A

