STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/PE/TS24

M. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE: ELECTIVEPAPER: TENSOR ANALYSIS AND SPECIAL THEORY OF RELATIVITYTIME: 3 HOURSMAX. MARKS : 100

SECTION -A

Answer all the questions:

5×2=10

- 1. Write down the value of $A^p.q$
- 2. Define Quotient Law.
- 3. Evaluate $\delta_q^p \delta_r^q$.
- 4. State the two basic postulates of special theory of relativity.
- 5. Define space like interval.

SECTION – B

Answer any five questions:

- 6. Show that $\frac{\partial A_p}{\partial x^q}$ is not a tensor even though A_p is a covariant tensor of rank one.
- 7. Show that any inner product of the tensor A_r^p and B_t^{qs} is a tensor of rank three.
- 8. Determine the metric tensor in cylindrical and spherical coordinates.
- 9. Find the covariant derivative of $A_k^j B_n^{lm}$ with respect to x^q .
- 10. If the covariant force acting on a particle is given by $F_R = \frac{-\partial V}{\partial x^x}$ where $V(x^1, ..., x^N)$ is the potential energy, then obtain the Lagrange's Equations.
- 11. Obtain Galilean transformation equation for velocity components and acceleration components.
- 12. Explain Longitudinal Contraction.

5×6=30

SECTION -C

Answer any three questions:

- 13. A quantity A(p,q,r) is such that in the coordinates system x^i , $a(p,q,r)B_r^{qs} = C_p^s$ where B_r^{qs} is an arbitrary tensor and C_p^s is a tensor. Prove that A(p,q,r) is a tensor and show that every tensor can be expressed as the sum of two tensor, one of which is symmetric and the other skew-symmetric in a pair of covariant a center variance indices.
- 14. a) Prove that $g_{21}G(3,1) + g_{22}G(3,2) + g_{23}G(3,3) = 0$.
 - b) Derive the transformation laws for the Christoffel symbols of the second kind.
- 15. a) Show that the geodesics in a Riemannian space are given by

$$\frac{d^2x^r}{ds^2} + {r \\ pq} \frac{dx^p}{ds} \frac{dx^q}{ds} = 0.$$

b) Show that A^p , $q = \frac{\partial A^p}{\partial x^q} + {p \\ qs} A^s$ is tensor if A^p and is a tensor.

- 16. Obtain Lorentz Transformation Equations.
- 17. Explain Addition of Velocities and Time Dilation.

3×20=60