STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/PE/MM44

M. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : ELECTIVE

PAPER : MATHEMATICAL MODELING

TIME : 3 HOURS MAX. MARKS: 100

SECTION -A

Answer all the questions:

 $5 \times 2 = 10$

- 1. Explain the principle of superposition.
- 2. Describe the lumped element model.
- 3. Draw the generic schemetic of the variation of traffic velocity with density.
- 4. Explain the geometry of a planar pendulum.

5. Show that
$$\frac{1}{\lambda_H} \left(\ln \frac{H}{H_e} - \frac{H}{H_e} \right) + \frac{1}{\lambda_P} \left(\ln \frac{P}{P_e} - \frac{P}{P_e} \right) = \text{Constant}$$
, using parasite-host equation.

SECTION -B

Answer any five questions:

5×6=30

- 6. Explain dimensional homogeneity.
- 7. Explain Conservation and Balance principles.
- 8. In hovering, show that the power needed is proportional to $L^{\frac{7}{2}}$ and available power is proportional to L^2 .
- 9. Explain Conservation of Cars.
- 10. Consider a flow-density relationship of the form $q(\rho) = \rho(\alpha \beta \rho)$. The best fit of this relationship to some real traffic data occurred when $\alpha = 91.33 \, km / hr$ and

$$\beta = 1.4 \, km^2 / car.hr$$

- (a) What is the maximum density?
- (b) What is the maximum speed?
- (c) What is the capacity of the road?
- 11. Discuss the dissipation of energy while the pendulum is moving and obtain

$$\frac{dE(t)}{dt} = -cl^2 \left(\frac{d\theta(t)}{dt}\right)^2$$
 and hence show that $E(t) = E_0 e^{\left(-\frac{c}{m}\right)^t}$.

12. Derive $\frac{\tilde{T}_0}{T_0} \cong 1 + \frac{\theta_0^2}{16}$ for the nonlinear model of the freely-vibrating pendulum-III.

SECTION -C

Answer any three questions:

 $3 \times 20 = 60$

- 13. State and explain the Buckingham Pi theorem. Apply it to the Peanut butter mixer experiments and the classical pendulum experiment.
- 14. Describe the Scaling and Data acquisition in the cases:
 - (i) rotational inertia of a wheel and
 - (ii) the diagnosis of a malfunctioning electronic device.
- 15. Discuss, in detail, an elementary Linear Car following model.
- 16. Model the free vibration of pendulum with two masses m_1 and m_2 ; obtain its differential equation.

Discuss its solution in the cases : $m_2 < m_1$, $m_2 \ll m_1$, $m_2 > m_1$, $m_2 \gg m_1$ and $m_2 = m_1$

17. Obtain the Lotka-Volterra equations. Also, discuss the oscillatory solution for the Linearized Model.

