STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/PE/FT24

M. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : ELECTIVE

PAPER : FUZZY SET THEORY

TIME : 3 HOURS MAX. MARKS : 100

SECTION -A

Answer all the questions:

 $5 \times 2 = 10$

- 1. Define the scalar cardinality of a fuzzy set A defined on a finite set X.
- 2. Define the domain and range of a binary fuzzy relation.
- 3. Define Yager class of fuzzy compliments.
- 4. Define a fuzzy number.
- 5. Define fuzzy negation.

SECTION -B

Answer any five questions:

 $5 \times 6 = 30$

- 6. Let A, B be fuzzy subsets of . Then prove that ${}^{\alpha}A \cap {}^{\alpha}B = {}^{\alpha}(A \cap B)$, where $\alpha \in [0, 1]$.
- 7. Let $f: X \to Y$ be a crisp function. Then for any fuzzy subset A of X and for $\alpha \in [0, 1]$, prove that $\alpha[f(A)] \supseteq f(\alpha A)$. Is the reverse side inclusion true? Justify your answer.
- 8. Prove that every fuzzy complement has at most one equilibrium.
- 9. Determine which fuzzy sets defined by the following membership functions are fuzzy numbers?

(i)
$$A(x) = \begin{cases} \sin x & \text{for } 0 \le x \le \pi \\ 0 & \text{otherwise} \end{cases}$$
 (ii) $B(x) = \begin{cases} \min(1, x) & \text{for } x \ge 0 \\ 0 & \text{for } x \le 0. \end{cases}$

- 10. Define fuzzy extension of the classical AND and OR operator.
- 11. Order the following fuzzy sets defined by the following membership grade function (assuming $x \ge 0$) by the inclusion (subset) relation.

$$A(x) = \frac{1}{(1+10x)}, \quad B(x) = \left(\frac{1}{1+10x}\right)^{1/2}, \quad C(x) = \left(\frac{1}{1+10x}\right)^{2}$$

12. Prove that a fuzzy set A on \mathcal{R} is convex if and only if $A(\lambda x_1 + (1-\lambda)x_2) \ge \min[A(x_1), A(x_2)], \forall x_1, x_2 \in R, \lambda \in [0,1].$

SECTION -C

Answer any three questions:

 $3 \times 20 = 60$

13. Let $A_i \in \mathcal{F}(X)$ for all $i \in I$ (index set). Then prove that

(i)
$$\bigcup_{i \in I} {}^{\alpha}A_i \subseteq {}^{\alpha} \left(\bigcup_{i \in I} A_i\right)$$
.

(ii)
$$\bigcap_{i \in I} {}^{\alpha}A_i \subseteq \bigcap_{i \in I} A_i$$

(iii) Is the reverse-side inclusion of (ii) true? Justify your answer.

(iv)
$$\bigcup_{i \in I} {}^{\alpha +} A_i = \left(\bigcup_{i \in I} A_i \right)$$

$$(\mathbf{v}) \bigcap_{i \in I} {}^{\alpha +} A_i \subseteq \bigcap_{i \in I} {}^{\alpha +} \left(\bigcap_{i \in I} A_i\right).$$

14. Let $f: X \to Y$ be a crisp function. Then for any $A_i \in \mathcal{F}(X)$ and $B_i \in \mathcal{F}(X)$, prove the following properties obtained by the extension principle.

(i)
$$f(A) = \phi$$
 iff $A = \phi$.

(ii) If
$$A_1 \subseteq A_2$$
 then $f(A_1) \subseteq f(A_2)$

(iii)
$$f(\bigcup_{i \in I} A_i) = \left(\bigcup_{i \in I} f(A_i)\right)$$
.

(iv)
$$f(\bigcap_{i\in I} A_i) \subseteq \bigcap_{i\in I} f(A_i)$$
.

15. Given a t-conorm u and an involutive fuzzy complement c, prove that the binary operation ion [0, 1] defined by i(a,b)=c(u(c(a),c(b))) for all $a,b\in[0,1]$ is a t-norm such that $\langle i,u,c\rangle$.

16. State and prove the necessary and sufficient conditions for a fuzzy subset of \mathcal{R} to be a fuzzy number.

17. Explain any one application of fuzzy set theory in the field of medicine in detail.

