STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11CH/MC/PC64

B.Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COU PAP TIM		: :	MAJOR-CO PHYSICAL 30 MINUTE	CHEMISTRY	- III	Reg. No	MAX. MARKS : 30	•
	SWER AI hoose the	LL THE	E QUESTION	SECTION D ON THE QU IS.		PAPER I	TSELF. (30x1=30)	
1.	For a read a) sec			The rate consta			d) molL ⁻¹	
2.	A reaction a) Con		free radicals a b)Exp	are involved losion	c)Chain	d) Par	rallel	
3.	Adsorption a) Typ		-	on silica gel gi pe II c) Typ	-	on isother Type IV	m of	
4.	The unit of a) Sm ⁻		fic conductanc b) Sm	c) S ⁻¹	m d) S	S		
5.	The ionic a) 0.01	_	h 0.01M Na ₂ S b) 0.02m	SO ₄ is given as	c) 0.03m	d) 0.0)4m	
6.	The salt t a) NH ₂		ot undergo hy b) CH ₃ COON	•	c) KCl	d) CH ₃ (COONH ₄	
7.	-	e detern electroc	nined using de b) Calon	nel electrode	e) Glass elec	etrode d)	All the above	
8.	a) Trai		cells EMF aris electron t anode	ses due to	b) Transfer d) Reduction			
9.	a) zino	e is redu	* *	ulphate solutio	n b) zinc is o d) no react		S	
	electrolyt	_	passage of ele	eory, The effect ectricity is know			vement of ions in an	

d) Electrostatic effect

c) Electrophoretic effect

II. Fill in the blanks:

11. As concentration increases	rate of the reaction	.
	on rate constant is termed as _	
	lso known as	
14. The heat of chemisorptions	s isthan physical	adsorption
15. As dilution increases speci	fic conductance of an electrolyte	<u>. </u>
	t carried by an ion is known as	
	energy is converted into	
18. Standard hydrogen electroo	de is represented as	·
19. Precipitation of lead as lead	ad chloride in acidic medium	indicates its solubility product is
than the io		• 1
	effect of concentration on	·
III. Match the following:		
21. Pseudo first order	catalyst	
22. Activation energy	weak elctrolyte	
23. Adsorption	acid hydrolysis of ester	
24. Ostwalds' law	High voltage	
25. Wien effect	activated charcoal	
IV. Answer in a line or two:		
26. Define half life period of a	reaction	
27. What are potential electroly	ytes?	
28. What is meant by ionic pro	oduct of water?	
29. Give reason for choosing k	KCl as salt bridge.	
30. What is a reference electro	de? Give an example.	

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11CH/MC/PC64

B.Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH IV - CHEMISTRY SIXTH SEMESTER

COURSE MAJOR – CORE

PAPER : PHYSICAL CHEMISTRY - III

TIME 2 ½ HOURS MAX. MARKS: 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5x6=30)

1. Ethyl acetate was subjected to hydrolysis in normal HCl at 298K. 5 mL of the mixture were withdrawn and titrated against standard NaOH solution at different intervals. Show that the reaction follows first order kinetics

0 75 120 t (min) 20 175 ∞ 30.20 43.95 Vol of NaOH(mL) 20.25 21.70 25.20 27.65

- 2. Deduce Langmuir equation of adsorption and discuss the limiting conditions at low pressure.
- 3. How is transport number of an ion determined by moving boundary method?
- 4. What is mean ionic activity coefficient of an electrolyte? How will you write it for a uniunivalent and bi-bivalent electrolyte?
- 5. Write notes on metal- insoluble salt electrodes.
- 6. How is valency of an ion determined from EMF measurements?
- 7. Construct a cell for the reaction Fe+ $Ni^{2+} \rightarrow Fe^{2+} + Ni$. Calculate the EMF of the cell at 298K from the standard electrode potential data: $E_{Fe}^{\circ}^{2+}/F_{e}=-0.44 \text{ V}$ $E_{Ni}^{\circ}^{2+}/N_{i}=-0.25 \text{ V}$. Is the cell reaction spontaneous?

SECTION - C

ANSWER ANY TWO QUESTIONS:

(2x20=40)

- 8. a) Discuss any two methods to study the kinetics of a reaction. (10)b) What are the limitations of collision theory? Discuss Lindmann theory of unimolecular
 - reactions
- 9. a) Calculate degree of dissociation of 0.01M CH₂ClCOOH, given that the $\lambda_{\rm M}^{\circ}$ values for HCl, KCl and CH₂ClCOOK are 4.261, 1.4986 and 1.132 Sm²mol⁻¹ respectively. The molar conductance at 0.01M is 2.134 Sm²mol⁻¹.
 - b) Discuss the titration curves obtained in the conductivity titration of a strong acid with
 - c) How is conductance of strong electrolytes explained on the basis of Debye Huckel theory? (10)

10. a) Explain the phenomenon of hydrolysis of salts with CH₃COONa.b) Derive Hendersen - Hasselbalch equation and explain the buffer action of aci	(5) dic				
buffer.	(10)				
c) Calculate the solubility product of a salt MH ₂ in water. The solubility of the					
water is 1×10^{-4} .	(5)				
11. a) Derive an expression for the EMF of an electrolyte concentration cell with transference.b) Explain the determination of pH using Quinhydrone electrodec) Derive the relationship between EMF of a cell and equilibrium constant. What is the significance of this equation.	(8) (6) (6)				
