STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11CH/MC/PC44

B.Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH IV - CHEMISTRY FOURTH SEMESTER

			Reg. N			
COURSE	:	MAJOR – CORE				
PAPER	:	PHYSICAL CHEMIST	ΓRY- I			
TIME	:	30 MINUTES	MA	X. MARKS : 30		
			SECTION - A			
	TO I	BE ANSWERED ON THI	E QUESTION PAPER I'	TSELF.		
ANSWER		IE QUESTIONS.		(30x1=30)		
I. Choose t	the corre	ct answer:		·		
1. Partial 1	Partial molar free energy is					
(i) (∂H/	′∂ni) _{T,P,nj}	(ii) $(\partial G/\partial ni)_{T,P,nj}$) (iii) $(\partial G/\partial ni)s_{P,nj}$	(iv) $(\partial H/\partial ni) s, v,_{nj}$		
2. Spontar	neity of a	reaction is accompanied by	y			
(i) dea	crese in	entropy	(ii) increase in intern	(ii) increase in internal energy		
(iii) de	crease in free energy		(iv) decrease in enth	(iv) decrease in enthalpy		
, ,			,	1.		
3. In an is	othermal	process				
(i) T rei	mains co	nstant	(ii) P remains consta	ant		
(iii) V r	emains c	onstant	(iv) none of the above			
4. $C_P - C_V$	is equal	to				
	constant		(ii) Plank's constant			
(iii) vander Waal's constant		l's constant	` '	(iv) Boltzmann constant		
(III) vai	idei waa	1 5 Constant	(IV) BOILEMAIN CONS	, tant		
5. Joule –	Thomson	n coefficient is				
(i) (∂T/∂		(ii) (∂H/∂T) _P	(iii) (∂H/∂T) _V	(iv) $(\partial T/\partial P)_V$		
(1) (0 17)	от /п ,	(11) (011101)	(III) (011/01) V	(11) (01/01)		
6. Dissolu	Dissolution of ammonia in water is accompanied by					
		thalpy (ii) decrease in en	- · · · · · · · · · · · · · · · · · · ·	n enthalpy (iv) none		
(1) 11101		(ii) decrease in on	(iii) iie tiimigt ii			
7. Resona	Resonance energy of benzene is					
(i) 100	-	(ii) 125 kJ	(iii) 151 kJ	(iv) 176 kJ		
(-) - 30	-	()	() -31 10	(=-,/ = - 0 110		
8. Efficier	Efficiency of a heat engine working between 25°C and 110°C is					
(i) 100	•	(ii) 20%	(iii) 50%	(iv) 40%		
\ /		` /	` /	` /		

9.	When ice melts entropy									
	(i) remains same	(ii) increases	(iii) decreases	(iv) becomes zero						
10.	10. Boltzmann entropy equation is									
	(i) S = k ln W	(ii) $S = W \ln K$	(ii) $S = \ln W / K$	(iv) $S = \ln k/W$						
II.	Fill in the Blanks:									
11.	1. Gibbs – Duhem equation is									
12.	2. Standard state for a liquid is									
13. Activity of a solid in the pure state is										
14. Nernst heat theorem is										
15. Heat capacity of a solid at25°C is										
16. Chemical potential is a										
17. Vapourisation of water is a										
18.	18. Unit of vander Waal's constant 'a' is									
19.	19. Inversion temperature is									
20. Formation of ammonia from N ₂ and H ₂ is a process.										
III. State true or false:										
21. In real gases fugacity replaces pressure.										
22. Heat capacity of solids decrease with increase in temperature.										
23. Le Chatelier principle is applicable for equilibrium reactions.										
24. Temperature is an intensive variable.										
25.	Entropy of crystalline sol	ids is zero at UK.								
IV. Match the following:										
26.	(∂H/∂ni) _{S,V,nj}	(i) RT ln (1/Kp)								
	_	i) V								
28.	$(\partial G/\partial P)_T$	(iii) -Si								
29.	$(\partial \mu/\partial T)_P$	(iv) fi/fi°								
30.	a_{i}	(v) (∂G/∂ni)								

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11CH/MC/PC44

B.Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH IV - CHEMISTRY FOURTH SEMESTER

COURSE: MAJOR - CORE

PAPER : PHYSICAL CHEMISTRY-I

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5x6=30)

- 1. State and explain zeroth law of thermodynamics.
- 2. Derive Kirchoff's equation.
- 3. What is partial molar free energy? How does it vary with pressure and temperature?
- 4. Explain Criteria for reversible and irreversible processes.
- 5. Derive an expression for work done in a reversible isothermal expansion of an ideal gas.
- 6. Distinguish the terms-(i) extensive and intensive variables (ii) open and closed systems.
- 7. Write a note on thermodynamic scale of temperature.

SECTION - C

ANSWER ANY TWO QUESTIONS:

(2x20=40)

- 8. (a) State the third law of thermodynamics. Explain how the absolute entropy of a substance be determined with the help of it? (10)
 - (b) Derive Gibbs- Helmholtz equation for a process at constant pressure and at constant volume. (6)
 - (c) Calculate ΔS if one mole of an ideal gas is heated from 27°C to 227°C at constant volume. (4)
- 9. (a) Explain the terms fugacity and activity . (4)
 - (b) Derive Clasius- Clapeyron equation and explain its applications. (12)
 - (c) Calcualte the entropy of mixing of one mole of oxygen gas and two moles of hydrogen gas assuming that the mixture behaves ideally. (4)

- 10. (a) State and explain Hess's law of constant heat summation and discuss any two of its applications. (10)
 - (b) Discuss the need for the second law of thermodynamics. (5)
 - (c) The free energy change accompanying a given process is -85.77kJ at 25°C and -83.68 kJ at 35°C. Calculate the change in enthalpy for the process at 30°C. (5)
- 11. Give an account of the following

5x4=20

(i) Maxwell's relations

(ii) Le Chatlier's Principle

(iii) Joule –Thomson effect

(iv) Significance of entropy
