SYLLABUS (Effective from the academic year 2015 -2016) DATA MINING

CODE: 15BI/PE/DM14

CREDITS : 4 L T P : 400 TOTAL TEACHING HOURS : 52

OBJECTIVES OF THE COURSE:

- To provide an insight to Data mining
- > To introduce the techniques used in data mining
- > To understand these techniques in collecting and sorting of data

Unit 1

Data Mining

- 1.1 Introduction: Classification of Data, Relational Databases. Data Warehouses Transactional Databases .Advanced Database Systems and Advanced Database Applications
- 1.2 Data Mining Functionalities. Concept /Class Description
- 1.3 Characterization and Discrimination. Association Analysis

Unit 2

Classification and Prediction

- 2.1 Classification and Prediction -Clustering Analysis. Evolution and Deviation Analysis
- 2.2 Classification of Data Mining Systems. Major Issues in Data Mining
- 2.3 Multimedia Data Mining. Spatial Data Mining. Text Mining

Unit 3

Data Processing

- 3.1 Data Preprocessing. Data Integration and Transformation, Data Reduction. Association Rule Mining
- 3.2 The Apriori Algorithm: Finding Frequent Item Sets From Association Mining to Correlation Analysis
- 3.3 Classification and Prediction Classification by Back Propagation Association-Based Classification Other Classification Methods

Unit 4

Clustering

- 4.1 Clustering Cluster Analysis Types of Clustering Methods- Types of Data in Clustering Analysis
- 4.2 A categorization of Major Clustering Methods. Hierarchical Methods. Density Based Clustering Methods. Grid Based Methods. Outlier Analysis
- 4.3 Data Mining Applications and Trends in Data Mining Data mining Applications in Biotechnology and Bioinformatics

(10 hrs.)

(10 hrs.)

(12 hrs.)

(8 hrs.)

Neural Networks and Machine Learning

(12 hrs.)

5.1 Introduction to Neural networks, Learning Rules

5.2 Classification Analysis, Learning Algorithm and Model Evaluation

5.3 SOM and SVM Techniques in Data Mining

TEXT BOOK

Jiawei Han and Micheline Kamber. *Data Mining: Concepts and Techniques*, USA: Morgan Kaufmann Publishers, 2011.

BOOKS FOR REFERENCE

Oliviero carugo and Frank Eisenhaber. *Data Ming techniques for life sciences*. Singapore: Humana Press, 2009.

JOURNALS

Data Mining in Bioinformatics International Journal of Data Mining and Bioinformatics

WEB RESOURCES

http://www.bioinformaticszen.com/post/an-introduction-to-data-mining-inbioinformatics/ http://biit.cs.ut.ee/

PATTERN OF EVALUATION Continuous Assessment:

Total Marks: 50Duration: 90 mins.Section A - 10 x 1 = 10 Marks (All questions to be answered)Section B - 2 x 10 = 20 Marks (2 out of 4 to be answered)Section C - 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component: List of Evaluation modes Assignment Case study Seminars

End Semester Examination:

Total Marks: 100Duration: 3 hoursSection A - 20 x1 = 20 Marks (All questions to be answered)Section B - 4 x 10 = 40 Marks (4 out of 7 to be answered)Section C - 2 x 20 = 40 Marks (2 out of 4 to be answered)

SYLLABUS

(Effective from the academic year 2015 -2016)

RESEARCH METHODOLOGY AND SCIENTIFIC COMMUNICATION

CODE:15BI/PE/RM14

CREDITS : 4 L T P : 400 TOTAL TEACHING HOURS : 52

OBJECTIVES OF THE COURSE

- ➤ To describe and express the role and importance of research in basic and applied sciences
- To facilitate writing of research proposals / projects and apply for grants in the field of bioinformatics

Unit 1

Introduction

- 1.1 Definition of Research and Research Methodology. Principles and Practice of Research. Exploring the Broad Area – Using the Library and Online Resources. Narrowing the Subject. Identifying The Research Problem
- 1.2 Literature Review Its Relevance and Importance in Directing Research. Citations – Types Of Citations
- 1.3 Action Plan, Design and Pilot Study Undertaking a Research Project

Unit 2

Types of Data

- 2.1 Data Collection, Sampling. Sources of Data Primary, Secondary and Tertiary Sources Classification and Presentation of Data
- 2.2 Documents, Types of Documents, Archives, Chronologies
- 2.3 Electronic Sources of Data: Internet, Websites

Unit 3

Scientific Communication

- 3.1 Writing a Research Proposal: The Components of the Proposal, Structure of the Proposal. Writing Grant Proposals.
- 3.2 Format of Thesis. Presentation of the Results, Tabulations and Figures.
- 3.3 Guidelines for Writing Papers and Making Posters for Presentation

Unit 4

Bioethics

- 4.1 Bioethics- Introduction. Intellectual Property Rights (IPR) and Patents, TRIPS
- 4.2 Case studies on Patents (Basmati, Turmeric and Neem).
- 4.3 Plagiarism –Viper Software

(10 hrs.)

(10 hrs.)

(10 hrs.)

(101....)

(12 hrs.)

Critiquing a Research Paper

(10 hrs.)

- 5.1 Paper critiquing- the Purpose and the Methodology of Paper Critiquing
- 5.2 Bibliography and End Matters, Editing and Proof Reading a Thesis.
- 5.3 Common Errors in Scientific Writing.

TEXT BOOKS

Beauchamp, T.L., and Childress, J.F. *Principles of Biomedical Ethics*. India: Oxford University Press, 1994.

Gopalan, R. Thesis Writing. India: Vijay Nicole Imprints Private Limited, 2005.

Gurumani, N. Research Methodology for Biological Sciences. India MJ Publishers, 2010.

Raman, A. A Handbook on Research Processes. India: S. Viswanathan Pvt. Ltd., Chennai, 2003.

REFERENCE BOOKS

Kothari C R. *Research Methodology, Methods and Techniques*. India: Wishwa Prakashan, 2009.

Pence, G.E. Classic Cases in Medical Ethics.India: McGraw-Hill, 2004.

JOURNALS

The Journal of Communication International Association for Media And Communication Research Indian Journal of Science Communication

WEB RESOURCES

http://www.palgrave.com/studentstudyskills/page/choosing-appropriate-researchmethodologies/ https://explorable.com/research-methodology

PATTERN OF EVALUATION

Total Marks: 50 Duration: 90 mins.

Continuous Assessment:

Section A – 10 x 1 = 10 Marks (All questions to be answered) Section B – 2 x 10 = 20 Marks (2 out of 4 to be answered) Section C – 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component: List of Evaluation modes

Assignment Open book test Case study

End Semester Examination:

Total Marks: 100

Duration: 3 Hours

Section A – 20 x 1 = 20 Marks (All questions to be answered) Section B – 4 x 10 = 40 Marks (4 out of 7 to be answered) Section C – 2 x 20 = 40 Marks (2 out of 4 to be answered)

SYLLABUS (Effective from the academic year 2015 -2016) **CHEMINFORMATICS**

CODE: 15BI/PE/CI14

CREDITS:4 LTP:400 **TOTAL TEACHING HOURS: 52**

OBJECTIVES OF THE COURSE

- > To introduce the basic concepts of using chemical structure databases
- > To apply the concepts and learn the use of cheminformatics tools

Unit 1

Introduction

- 1.1 Introduction to Cheminformatics, History and Evolution of Cheminformatics, Use of Cheminformatics, Prospects of Cheminformatics
- 1.2 Databases: Chemical Structure Databases (PubChem, Binding database, Drug bank)
- 1.3 Modelling of small molecules and Structure Elucidation

Unit 2

Representation of Molecules

- 2.1 Representation of Molecules and Chemical Reactions
- 2.2 Different Types of Notations, SMILES Coding, Structure of Mol files and Sdf files (Molecular converter, SMILES Translator)
- 2.3 Similarity Search of the Molecule

Unit 3

Cheminformatics Databases

- 3.1 Structure databases; Reaction Databases; Literature Databases; Medline; GenBank
- 3.2 PIR; CAS Registry; National Cancer Institute (NCI) Database
- 3.3 Databases of Small Molecules (PubChem, ZINC)

Unit 4

Searching Chemical Structure

- 4.1 Searching Chemical Structure: Full Structure Search; Sub Structure Search; Similarity Search
- 4.2 Three dimensional Search Methods. Structure Visualization
- 4.3 Drawing the Chemical Structure: 2D & 3D Drawing Tools (ACD Chemsketch). Structure Optimization

(10 hrs.)

(16 hrs.)

(8 hrs.)

(10 hrs.)

Applications of Cheminformatics Tools

(8 hrs.)

- 5.1 Definition of drugs, Structure-Based Drug Design, QSAR
- 5.2 Pharmacophore Design, Ligand-Based Design, De Novo Drug Design Virtual Screening / Docking of Ligands
- 5.3 Protein structure. Fragment-Based Drug Design, ADMET Prediction

TEXT BOOK:

- Johann Gasteiger and Thomas Engel. *Chemoinformatics-A Textbook*. Germany: Wiley-VCH, 2003.
- Johann Gasteiger. *Handbook of Chemoinformatics-From Data to Knowledge*, Germany: Wiley-VCH, 2003.

REFERENCE BOOK:

- Andrew R. Leach, Valerie J. Gillet. An Introduction to Chemoinformatics.UK: Springer, 2007.
- Bunin, Barry A. Dordrecht. *Chemoinformatics: Theory, Practice, and Products.*UK: Springer, 2010.
- Bajorath, Juergen, Totowa, N.J. *Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery*. USA: Humana Press, 2004.
- Ekins, Sean, Hoboken, N.J. Computer *Applications in Pharmaceutical Research and Development*. Germany: Wiley, 2006.

JOURNALS

Journal of Cheminformatics

Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery International Journal of Chemoinformatics and Chemical Engineering BMR Bioinformatics & Cheminformatics The Journal of Chemical Information and Modeling

WEB RESOURCES

http://cheminformatics.org/ http://www.emolecules.com/info/molecular-informatics http://accelrys.com/products/informatics/cheminformatics/ http://www.rasalsi.com/services_drugdis.html

PATTERN OF EVALUATION

Continuous Assessment:

Total Marks: 50

Duration: 90 mins.

Section A – 10 x 1 = 10 Marks (All questions to be answered) Section B – 2 x 10 = 20 Marks (2 out of 4 to be answered) Section C – 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component: List of Evaluation modes Assignment Case study Seminars

End Semester Examination:

Total Marks: 100

Duration: 3 Hours

Section A $- 20 \times 1 = 20$ Marks (All questions to be answered) Section B $- 4 \times 10 = 40$ Marks (4 out of 7 to be answered) Section C $- 2 \times 20 = 40$ Marks (2 out of 4 to be answered)

SYLLABUS

(Effective from the academic year 2015 -2016) IMMUNOINFORMATICS

CODE: 15BI/PE/IM14

CREDITS : 4 L T P: 400 TOTAL TEACHING HOURS: 52

OBJECTIVES OF THE COURSE

- > To understand the application of information technology to immunology
- To apply the immunological data and to the sophisticated computational solutions available for immunological research

Unit 1

Immune System

- 1.1 Introduction to Immune System. Adaptive and Innate Immunity
- 1.2 Cells of the Immune System, Soluble Mediators of Immunity, Antigens, Immune Responses
- 1.3 Inflammation, Immunopathology

Unit 2

Major Histocompatibility Complex

- 2.1 The Major Histocompatibility Complex (MHC) its Polymorphism, Causes Polymorphism, Supertypes
- 2.2 Epitope. Affinity Maturation.Epitope mapping
- 2.3 Principles of B-cell and T-cell Epitope Prediction. Recognition of Antigen by B cells. Neutralizing Antibody

Unit 3

Computational Immunology

- 3.1 Computational Immunology. Databases in Immunology.From immunome to Vaccine. Vaccine design tools. IMGT immunoinformatics
- 3.2 Reverse Vaccinology and immunoinformatics. Peptides with Antimicrobial Activity or Antibiotic Peptides
- 3.2 The Future of Computational Modelling and Prediction Systems in Clinical Immunology

(8 hrs.)

(10 hrs.)

У

(10 hrs.)

Immunogenetics

4.1 From Immunogenetics to Immunomics

- 4.2 Functional Prospecting of Genes and Transcripts
- 4.3 IMGT International ImMunoGeneTics Information System.HLA Nomenclature and the IMGT/HLA Sequence Database

Unit 5

Viral Bioinformatics

- 5.1 Viral Bioinformatics. Computational Views of Hosts and Pathogens using VIDA
- 5.2 Drug Discovery: Introduction. Conventional Drug Design Approaches, Irrational vs. Rational, Lipinski rule-pharamcophore Kinetics And Dynamics-ADME Properties
- 5.3 Applications of Computer Based Drug Discovery.

TEXT BOOKS

Christian Schönbach, ShobaRanganathan, and Vladimir Brusic. *Immunoinformatics* (*Immunomics Reviews*) USA: Humana Press, 2010.

Darren R. Flower. *Bioinformatics forImmunomics (Immunomics Reviews)*. New York: Springer-Verlag, 2010.

BOOKS FOR REFERENCE

Kenneth Murphy. Janeway's Immunobiology, UK: Garland Science, 2014.

Robert A. Meyer. Immunology - from cell biology to disease. Germany: Wiley VCH, 2007.

Richard A.Goldsby, Thomas .J Kindt, Barbara A.Osborne&Janis Kuby.*Immunology*. USA: WH Freeman Company,2013.

JOURNALS

Immunology Immunoinformatics BMC Genomics Journal of Computational Biology

WEB RESOURCES

http://www.imgt.org/Immunoinformatics.html http://rsob.royalsocietypublishing.org/content/3/1/120139 http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020071

(12 hrs.)

(12 hrs.)

http://omicsonline.com/immunoinformatics.php

PATTERN OF EVALUATION Continuous Assessment:

Total Marks: 50Duration: 90 mins.Section A - 10 x 1 = 10 Marks (All questions to be answered)Section B - 2 x 10 = 20 Marks (2 out of 4 to be answered)Section C - 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component:

List of Evaluation modes

Assignment Tests Seminars

End Semester Examination:

Total Marks: 100 Duration: 3 hrs. Section A – 20 x 1 = 20 Marks (All questions to be answered)

Section B - $4 \times 10 = 40$ Marks (4 out of 7 to be answered)

Section C - $2 \times 20 = 40$ Marks (2 out of 4 to be answered)

SYLLABUS (Effective from the academic year 2015 - 2016) **CELL BIOLOGY AND GENETICS**

CODE: 15BI/PE/CG14

CREDITS:4 LTP:400**TOTAL TEACHING HOURS: 52**

OBJECTIVES OF THE COURSE

- > To understand the structure and function of the Cell and all its components in both Prokaryotic and Eukaryotic cells.
- > To understand the Basic Concepts of Genetics.

Unit 1

Prokaryotic and Eukaryotic cells

- 1.1 Characteristics, Similarities and Differences
- 1.2 Bacteria Cells Structure, Organisation, Transport, Virus Structure, Viral Infective Cycles, Origin and Significance, Viroids and Prions
- 1.3 Chromosomes Structure and Function of Chromosomes, Centromeres and Telomeres, Mitosis and Meiosis

Unit 2

Organelles

- 2.1 Structure and Function of Mitochondria, Plastids (i.e.Chloroplasts), Endoplasmic Reticulum Golgi bodies, Lysosomes and Peroxisomes
- 2.2 DNA -Structure Conformations, Histones and Non-Histones, Nuclear Matrix and Lamins; Nuclear Envelope, Pore Complexes, Transport Through the Envelope
- 2.3 RNA- Ribosomes Structure, Assembly of Polypeptides on Ribosomes, Post-Translational Modifications.

Unit 3

Cytoskeleton

- 3.1 Structure of the Cell Wall
- 3.2 Structure and Role of Microtubules and Microfilaments in cells -cell-cell Interactions- Cell Adhesion, Tight Junctions and Plasmodesmata
- 3.3 Introduction to Membranes Structure, Function, and Communication: Roles of Membranes in Eukaryotic Cells; Membrane Structure and Composition, Plasma Membrane - Fluid Mosaic Model; Organization of Membranes in the Cells

(12 hrs.)

(12 hrs.)

(10 hrs.)

Multiple Alleles

- 4.1 Human blood groups (A, B, AB, O, M, N and H) and Rh factor Inheritance and significance
- 4.2 Gene Linkage and Recombination: Coupling and Repulsion Hypothesis Linkage in *Drosophila* Cytological Proof of Crossing Over - Example – *Drosophila*
- 4.3 Mapping: Locating Genes along a Chromosome: Two Point and Three Point Crosses

Unit 5

Karyotyping

- 5.1 Sex Determination and Sex Chromosomes
- 5.2 Chromosomal Mechanisms of Sex Determination and Karyotyping
- 5.3 Sex determination in Human Barr body Importance of Y Chromosome -Klinefelters' and Turners' Syndromes Inter –Sexuality Linked Inheritance: Colour Blindness and Haemophilia Y - Linked Genes

TEXT BOOKS

Klug, William, S. and Michael R. Cummings. Concepts of Genetics. USA: Prentice Hall, 2008.

Purvis, William K, David Sadava, Craig Heller and Gordan H. Orians. *Life: The Science of Biology*. USA : Sinauer, 2004.

BOOKS FOR REFERENCE

- Burns, George W., and Botto, Paul J.*The Science of Genetics*. USA: Macmillan Publishing Company, 1989.
- Darnell, James, Harvey Lodish and David Baltimore. *Molecular and Cell Biology*, Scientific American Books, USA : W.H. Freeman, 2000.
- Karp and Gerald. *Cell and Molecular Biology- Concepts and Experiments*, USA : John Wiley, 2013.
- Karp, Gerald and Nancy L. Puritt, *Cell and Molecular Biology- Concepts and Experiments*, USA: John Wiley, 2004.
- Lodish Harvey, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monte Krieger, Mathew P. Scott, S. Lawrence Zipursky and James Darnell. *Molecular Cell Biology*. USA: W.H. Freeman, 2004.

Lewin and Benjamin. Genes IX, UK :Oxford University Press, 2009.

Roitte, Ivan M., Brostoff, Jonathan and Male, David K.*Immunology*. Philadelphia: J.B. Lippincott, 1990.

(8 hrs.)

(10 hrs.)

Watson, James, D. *Molecular Biology of the Gene*. USA : The Benjamin Cummings Publishing Company,2007.

JOURNALS

The Journal of Molecular Cell Biology The Journal of Cell Biology Journal of Genetics and Genomics BMC Cell Biology

WEB RESOURCES

http://www.nature.com/scitable/topic/cell-biology-13906536 http://www.biology.arizona.edu/cell_bio/cell_bio.html http://learn.genetics.utah.edu/content/science/ http://ghr.nlm.nih.gov/

PATTERN OF EVALUATION

Total Marks: 50

Duration: 90 mins.

Continuous Assessment:

Section A – 10 x 1 = 10 Marks (All questions to be answered) Section B – 2 x 10 = 20 Marks (2 out of 4 to be answered) Section C – 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component: List of Evaluation modes

Assignment Open book test Seminar Study on genetic disorders

End Semester Examination:

Total Marks: 100

Duration: 3 Hours

Section A $- 20 \times 1 = 20$ Marks (All questions to be answered) Section B $- 4 \times 10 = 40$ Marks (4 out of 7 to be answered) Section C $- 2 \times 20 = 40$ Marks (2 out of 4 to be answered)

SYLLABUS (Effective from the academic year 2015 -2016) BASIC MATHEMATICS

CODE: 15BI/PE/BM14

CREDITS: 4 L T P: 400 TOTAL TEACHING HOURS: 52

OBJECTIVES OF THE COURSE

- > To enhance the skills in mathematics those are essential for learning Bioinformatics
- To understand and implement various mathematical techniques being applied in analyzing information of biological data

Unit 1

Set Theory

- 1.1 Introduction, Examples of Sets, Representation of a Set, Notation
- 1.2 Set Operations Types of Sets, Subsets, Complement of Sets, Union and Intersection of Sets, Difference of Sets
- 1.3 De Morgan's Law, Complement of a Set, Set Difference, Venn Diagram, Cartesian Product of Sets

Unit 2

Algebra

- 2.1 Algebra: Functions, Matrix, Basic Operations, Transpose, square matrices, Non Singular Matrices, Inverse of a Matrix, Determinants, Elementary Applications
- 2.2 Progressions, Arithmetic Progression, Geometric Progressions, Expansions
- 2.3 Exponential Series, Logarithmic Series (without proof) Simple Problems

Unit 3

Differential Calculus

- 3.1 Differentiation of Standard Functions, Basic Rules of Differentiation, Successive Differentiation
- 3.2 Applications (Concepts and Simple Problems only), Meaning of the Derivative, Tangent and Normal, Maxima and Minima
- 3.3 Partial Differentiation

Unit 4

Integral Calculus

- 4.1 Methods of Integration, Simple Problems
- 4.2 First Order Ordinary Differential Equations, Second Order Ordinary Differential Equations with Constant Co-Efficient
- 4.3 Fourier Series and Fourier Transforms Simple Problems

(10 hrs.)

(8 hrs.)

,

(12 hrs.)

(12 hrs.)

Probability

- 5.1 Introduction Probability Distribution: Basics of Binomial, Poisson and Normal Distributions, Baye's Theorem and their Application in Biology
- 5.2 Random Variable; Discrete and Continuous Probability Distribution, Probability Mass Function, Probability Density Function, Mathematical Expectation
- 5.3 Binomial Co-efficient, Permutations, Combinations, Identities Applications, Sampling with Replacement

TEXT BOOKS

Bogart, Kenneth, P. Introductory Combinatorics. USA :Pitman Publishing, Inc., 1983.

- Lipschutz S. and Lipson, M.L. *Discrete Mathematics*, New York: McGraw Hill Book Company, 2001.
- Massachusetts and Cohen. *Basic Techniques of Combinatorial Theory*. USA: John Wiley, 1979.
- Narayanan S. and Manicavachagam Pillay, T. K., *Calculus*. India: S. Viswanathan Printers and Publishers,2000.
- Narayanan S. and Manicavachagam Pillay, T. K., *Ancillary Mathematics-Book II*, India: S. Viswanathan Printers and Publishers, 2002.

BOOKS FOR REFERENCE

- Natarajan, T., Govindaraju T., Rajagopalan K. R. and Muthuswami K., *Matrices*, India: Rochouse, 1970.
- Raisinghania, M.D. Integral Transforms. India : S. Chand, 1998.
- Singaravelu A. Differential Equations, Fourier Series And Laplace Transforms, India:.Meenakshi Publishers, 2002.

Vittal, P.R. Allied Mathematics, India: Margham Publishers, 2001.

JOURNALS

The Journal of Mathematical Behavior Mathematical Journals The College Mathematics Journal International Journal of Mathematics and Statistics Studies

WEB RESOURCES

http://mathworld.wolfram.com/Integral.html http://www-math.mit.edu/~djk/calculus_beginners/ http://mathworld.wolfram.com/Probability.html https://www.math.hmc.edu/calculus/tutorials/matrixalgebra/

PATTERN OF EVALUATION

Continuous Assessment:

Total Marks: 50

Duration: 90 mins.

Theory:

Section A: $4 \times 5 = 20$ (Six questions to be set) Section B: $2 \times 15 = 30$ (Four questions to be set)

Third Component: List of Evaluation modes

Assignments Problem solving Tests

End Semester Examination:

Total Marks: 100Duration: 3 HoursSection A : 5×8 = 40 (Seven questions to be set).Section B : 3×20 = 60 (Five questions to be set).

SYLLABUS

(Effective from the academic year 2015 -2016) PHARMACOGENOMICS

CODE: 15BI/PE/PG24

CREDITS:4

L T P: 400

TOTAL TEACHING HOURS: 52

OBJECTIVES OF THE COURSE

- To understand the basics of pharmacogenomics in the context of variability in drug response
- To examine factors that affect drug response and the application of pharmacogenetics to drug development and drug treatment

Unit 1

Pharmacogenomics

- 1.1 Introduction to Basic Concept of Pharmacogenomics. Importance, Clinical Application and Challenges in Pharmacogenomics
- 1.2 Personalized Medicine- Introduction and Importance. The Genetics of Therapeutic Targets and Gene-Based Targets
- 1.3 Pharmacogenomics Necessity in Drug Designing

Unit 2

Genetic Variation

- 2.1 Introduction to Genetic Variation, Types of Variants, SNPs, Coding and Cis/Trans Regulatory Variants, Insertion/Deletions
- 2.2 Databases, National Pharmacogenetics Resources/Efforts (PGRN), Pharmacogenomics Knowledge Base (PharmGKB)
- 2.3 Prediction of Structural Changes among Sequences by the Influence of Polymorphisms. Genetic Analysis of Human Variation, Microsatellite for Studying Genetic Variation

Unit 3

Pharmacokinetics & Metabolism

- 3.1 Pharmacokinetics (PK), Pharmacodynamics (PD)
- 3.2 Safety Metabolisms Pharmacology, ADME
- 3.3 Definition of Toxicogenomics, Detoxification and Poisoning. Preclinical Toxicology

(8 hrs.)

(10 hrs.)

(12 hrs.)

Pharmacogenomics in Drug Discovery and Development (12 hrs.)

- 4.1 An Introduction to Drug Discovery and Development
- 4.2 Process in Structural Pharmacogenomics- Target Structure optimization, Validation, Lead Identification, ADME Prediction, Synthesis, Assays and Clinical Trials
- 4.3 Drug response to patients, Structural influence in the Drug response. Efficacy and Metabolism of Drugs. Drug Metabolism Pathways and Adverse Drug Reactions

Unit 5

Microarray Analysis

(10 hrs.)

- 5.1 DNA Microarray: Importance and Definition, Designing a Microarray Experiment: The Basic Steps
- 5.2Types of Microarray, NCBI and Microarray Data Management, GEO (Gene Expression Omnibus), MAML
- 5.3 The Promise of Microarray Technology in Treating Disease. Microarray Data, Expression Pattern, Visualizing Microarray Data

TEXT BOOKS:

Rapley R and Harbron S. Molecular analysis and Genome discovery. John Willey, 2004.

Russ B. Altman, David Flockhart, David B. Goldstein. *Principles of Pharmacogenetics* and *Pharmacogenomic*.UK:Cambridge University Press, 2012.

BOOKS FOR REFERENCE

Lori A. Nesbitt. *Clinical Research What It Is and How It Works*. UK: Jones Barlett Publishers, 2004.

Martin M. Zdanowicz. Concepts in Pharmacogenomics. NewYork: McGraw Hill, 2010.

Steven Piantadosi. Clinical Trials A Methodologic Perspective. UK: John Wiley, 2005.

JOURNALS

The Pharmacogenomics Journal American Journal of Pharmacogenomics Pharmacogenomics and Personalized Medicine Pharmacogenetics and Genomics

WEB RESOURCES

http://ghr.nlm.nih.gov/handbook/genomicresearch/pharmacogenomics https://www.pharmgkb.org/ http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.h tm

PATTERN OF EVALUATION

Continuous Assessment:

Total Marks: 50 Duration: 90 mins.

Section A – 10 x 1 = 10 Marks (All questions to be answered) Section B – 2 x 10 = 20 Marks (2 out of 4 to be answered) Section C – 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component: List of Evaluation modes

Assignment Case study Seminars

End Semester Examination:

Total Marks: 100

Duration: 3 hrs.

Section A – 20 x 1 = 20 Marks (All questions to be answered) Section B – $4 \times 10 = 40$ Marks (4 out of 7 to be answered) Section C – $2 \times 20 = 40$ Marks (2 out of 4 to be answered)

SYLLABUS

(Effective from the academic year 2015 -2016) FUNDAMENTALS OF BIOINFORMATICS

CODE: 15BI/PE/FB34

CREDITS : 4 L T P : 400 TOTAL TEACHING HOURS : 52

OBJECTIVES OF THE COURSE

- To familiarize the students with bioinformatics and its role in changing complex biological research
- To enable textual mining of biological literature and bioinformatics tools that are required to query biological data and analyze genomic data

Unit 1

Introduction to Bioinformatics

- 1.1 Introduction to Bioinformatics, Classification of biological databases, Biological Data Formats, Application of Bioinformatics in Various Fields
- 1.2 Introduction to Single Letter Code of Amino acids, Symbols Used in Nucleotides
- 1.3 Data Retrieval Systems- Entrez and SRS

Unit 2

Sequence Alignment

- 2.1 Introduction to Sequence Alignment. Substitution Matrices, Scoring Matrices PAM and BLOSUM
- 2.2 Local and Global Alignment Concepts, Dot Plot. Dynamic Programming Methodology: Needleman and Wunsch Algorithm. Smith–Waterman Algorithm.
- 2.3 Multiple sequence Alignment. Progressive Alignment. Database Search for Similar Sequences Using FASTA and BLAST Programs

Unit 3

Phylogenetic analysis

- 3.1 Evolutionary Analysis: Distances, Cladistic and Phenetic Methods
- 3.2 Clustering Methods. Rooted and Unrooted Tree Representation
- 3.3 Bootstrapping Strategies, Use of Clustal and PHYLIP

Unit 4

Genome analysis

- 4.1 Gene Finding Methods. Gene Prediction: Analysis and Prediction of Regulatory Regions
- 4.2 Fragment Assembly, Genome Sequence Assembly

(12 hrs.)

(10 hrs.)

(10 hrs.)

(10 hrs.)

4.3 Restriction Mapping, Repeat Sequence finder

Unit 5

Microarrays

(10 hrs.)

- 5.1 Concept of Gene Expression, Types of Microarrays; Making Microarrays; Spotted Microarrays
- 5.2 Using Microarrays, Sample Preparation and Labeling, Hybridization, Washing, Image Acquisition
- 5.3 GEO Database. Application of Microarrays

TEXTBOOKS

Baxevanis, Andreas D. and Francis B.F. Ouellette. *Bioinformatics- A Practical Guide to the Analysis of Genes and Proteins*. USA: John Wiley, 2001.

David W. Mount. Bioinformatics Sequence and Genome Analysis. INDIA: CBS Publishers, 2003.

Pevsner and Jonathan. Bioinformatics and Genomics Functional. USA: John Wiley, 2003.

BOOKS FOR REFERENCE:

Baldi P. and Brunak S. Bioinformatics: Machine Learning Approach. USA: MIT Press, 2003.

Chen, Yi-Ping Phoebe. Bioinformatics Technologies. Germany: Springer, 2005.

- Durbin R, S. Eddy, A. Krogh and G. Mitchison. *Biological Sequence Analysis: Probabilistic Proteins and Nucleic Acids.* USA: Cambridge University Press, 2005.
- Higgins, Des and Willie Taylor. *Bioinformatics –Sequence, Structure and Databanks Practical Approach*. UK: Oxford University Press, 2001.

Lesk Arthur M. Introduction to Bioinformatics. UK: Oxford University Press, 2005.

JOURNALS

BMC Bioinformatics Bioinformatics Journal of Bioinformatics and Computational Biology Journal of Biomedical Informatics Journal of Integrative Bioinformatics PLoS Computational Biology

WEB RESOURCES

http://bioinformaticsweb.net/tools.html https://www.bits.vib.be/index.php/training/122-basic-bioinformatics http://bioinformaticssoftwareandtools.co.in/ http://www.genscript.com/tools.html

PATTERN OF EVALUATION

Continuous Assessment:

Total Marks: 50

Duration: 90 mins.

Section A – 10 x 1 = 10 Marks (All questions to be answered) Section B – 2 x 10 = 20 Marks (2 out of 4 to be answered) Section C – 1x 20 = 20 Marks (1 out of 2 to be answered)

Third Component:

List of Evaluation modes

Assignment Open book test Seminars Quiz

End Semester Examination:

Total Marks: 100

Duration: 3 hrs.

Section $A - 20 \ge 1 = 20$ Marks (All questions to be answered)

Section $B - 4 \ge 10 = 40$ Marks (4 out of 7 to be answered)

Section $C - 2 \ge 40$ Marks (2 out of 4 to be answered)

(Effective from the academic year 2015 -2016) **PYTHON**

CODE: 15BI/PI/PT24

CREDITS: 4

OBJECTIVES OF THE COURSE

- > To gain knowledge of Python and its use as a programming language
- > To enable practical application of Python program

Unit 1

Introduction

- 1.1 Introduction to Python Language, Use of Third-Party Software, Object-Oriented Programming
- 1.2 The Python Environment Variables
- 1.3 Biopython

Unit 2

NumPy and SciPy

- 2.1 Introduction to NumPy and SciPy, Basic Array Manipulations
- 2.2 Basic Math: Equal or copy, Comparisons, Slicing, Sorting and Shaping, Statistical Methods, Array Conversion
- 2.3 Introduction to SciPy

Unit 3

Parsing DNA Data Files

- 3.1 FASTA Files, Genbank Files: File Overview, Parsing the DNA, Gene and Protein Information
- 3.2 Gene Locations Splices, Extracting all Gene Locations
- 3.3 Coding DNA, Proteins, Extracting Translations

Unit 4

Sequence Alignment

- 4.1 Matching Sequences: Perfect Matches, Insertions and deletions
- 4.2 Rearrangements, Global Versus Local Alignments, Sequence Length
- 4.3 Clustering: K-Means Clustering

Unit 5

Text Mining

- 5.1 An introduction to Text Mining, Collecting Bioinformatics Textual Data, Creating Dictionaries
- 5.2 Document Analysis: Text Mining of Documents, Word Frequency
- 5.3 Indicative Words, Document Classification

TEXT BOOKS

Jason Kinser. Python for Bioinformatics. Massachusetts: Jones and Barlett Publishers, 2009.

Mitchell L Model. *Bioinformatics Programming Using Python*. USA: O'Reilly Media Publication, 2009.

BOOKS FOR REFERENCE

Mark Lutz. Learning Python. USA: O'Reilly Media Publication, 2009.

Martin C Brown. Python: The Complete Reference. Osborne: McGraw-Hill Media, 2001

JOURNALS

The Python Papers Source Codes The Python Papers Anthology Python Journal

WEB RESOURCES

www.sthurlow.com/python/ www.learnpython.org www.codecademy.com/en/tracks/python https://docs.python.org/2/tutorial/ www.pyschools.com/

PATTERN OF EVALUATION End Semester Examination – (3 hrs.)

The duration of the examination will be 3 hrs. - 1 hr theory and 2 hrs practical.

Theory:

Section A – 30 x 1 = 30 Marks (All questions to be answered) Section B – 10 x 2 = 20 Marks (2 out of 4 to be answered)

Practical: Section C - $2 \times 25 = 50$ Marks

Question comprising the following:

Complete a programme, Write a Python program related to Bioinformatics (transcription, finding motifs/repeats/restriction enzyme etc.) Output of the given program.

SYLLABUS (Effective from the academic year 2015 -2016) SYSTEMS BIOLOGY

CODE: 15BI/PI/SB34

CREDITS:4

OBJECTIVE OF THE COURSE

- > To introduce the basic concepts of Systems biology
- To train the students in designing a new organism through modelling network concept and manipulating them for biological applications

Unit 1

Introduction

- 1.1 Introduction Systems Biology is a Living Science
- 1.2 Properties of Models-Model Behaviour- Model Development
- 1.3 Systems Biology is Data Integration

Unit 2

Standard Models and Approaches in Systems Biology

- 2.1 Standard Models and Approaches in Systems Biology
- 2.2 Enzyme Kinetics and Thermodynamics-Metabolic Networks
- 2.3 Structure of Intra- and Intercellular Communication-Receptor-Ligand Interactions

Unit 3

Modeling of Gene Expression

- 3.1 Modeling of Gene Expression-Modules of Gene Expression Promoter
- 3.2 Identification General Promoter Structure- Sequence-Based Prediction of
 - Promoter. Representation of Gene Network as Directed and Undirected Graphs.
- 3.3 Bayesian Networks-Boolean Networks- Gene Expression Modeling With Stochastic Equations

Unit 4

Analysis of Gene Expression Data

- 4.1 Analysis of Gene Expression Data- Introduction-DataCapture-DNA Array Platforms
- 4.2 Image Analysis and Data Quality Control-Grid Finding- Quantification of Signal Intensities- Signal Validity- Pre-processing-Global Measures.
- 4.3 Linear Model Approaches- Nonlinear. Fold-change Analysis

Clustering Algorithms

- 5.1 Clustering Algorithms-Hierarchical Clustering- Self-organizing Maps (SOMs).K-means- Validation of Gene Expression
- 5.2 Publication in the Era of Systems Biology- Systems Biology and Text Mining. Systems Biology in Medicine and Drug Development
- 5.3 Guiding the Design of New Organisms -Computational Limitations-Potential Dangers.

TEXT BOOKS

Andres Kriete And Roland Eils. Computational Systems Biology. Uk: Elsevier, 2005.

E. Klipp, R. Herwig, A. Kowald C. Wierling, H. Lehrach. Systems Biology In Practice-Concepts, Implementation And Application. Germany: Wiley-Vch Verlag Gmbh & Co.Kgaa, 2005.

BOOKS FOR REFERENCE

Choi And Sangdun. Introduction To Systems Biology. Usa: Humana Press, 2007.

- Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, Ralf Herwig. *Systems Biology: A Textbook*. Uk: Wiley- Vch.Edinburgh, 2009.
- Uri Alon. An Introduction To Systems Biology: Design Principles Of Biological Circuits. London: Chapman & Hall/Crc, Taylor And Francis Group, 2006.
- Zoltan Szallasi, Joerg Stelling, Vipul Periwal. *Systems Modeling In Cellular Biology*. Usa: Mit Press, 2006.

JOURNALS

Current Synthetic and Systems Biology Journal of Computer Science & Systems Biology Eurasip Journal on Bioinformatics And Systems Biology Bmc Systems Biology

WEB RESOURCES http://Sysbio.Med.Harvard.Edu/ www.Systemsbiology.Org www.Systemsbiology.Ucsd.Edu/ www.Sysbio.Org/

PATTERN OF EVALUATION End Semester Examination Total Marks: 100

Duration: 3 Hrs.

Section A – 20 X 1 = 20 Marks (All Questions To Be Answered) Section B – $4 \times 10 = 40$ Marks (4 Out Of 7 To Be Answered) Section C – $2 \times 20 = 40$ Marks (2 Out Of 4 To Be Answered)

SYLLABUS

(Effective from the academic year 2015 -2016) SOFT SKILLS

CODE:15BI/PK/SS22

CREDITS : 2 L T P : 200 TOTAL TEACHING HOURS : 26

OBJECTIVES OF THE COURSE

> To empower and create opportunities for self development

➤ To instill confidence and face challenges.

Unit 1

Behavioural Traits	(6 hrs.)
1.1 Self Awareness	
1.2 Communication Skills – Verbal and Non Verbal	
1.3 Leadership Qualities	
1.4 Etiquette and Mannerisms	
1.5 Experiential Learning – Based on Activities	
Unit 2	
Team Work	(5 hrs.)
2.1 Interpersonal Skills	
2.2 People Management	
2.3 Creative Thinking	
2.4 Critical Thinking	
2.5 Experiential Learning – Based on Activities	
Unit 3	
Time Management	(5 hrs.)
3.1 Importance of Time Management	
3.2 Planning and Prioritizing	
3.3 Organizing skills	
3.4 Action Plan	

3.5 Experiential Learning – Based on Activities

Conflict Resolution(5 hrs.)4.1 Reasons for Conflict4.2 Consequences of Conflict4.3 Managing Emotions4.4 Methods of Resolving Conflicts4.5 Experiential Learning – Based on Activities

Unit 5

Career Mapping

5.1 Goal Setting
5.2 Career Planning
5.3 Resume Writing
5.4 Handling Interviews
5.5 Experiential Learning – Based on Activities

BOOKS FOR REFERENCE

Khera, Shiv. You Can Win. India: Macmillan India Ltd, 2002.

Mishra, Rajiv K. Personality Development: Transform Yourself. India: Rupa and Co, 2004.

Newstrom, John W. and Scannell, Edward E. *Games Trainers Play: Experiential Learning*. India: Tata McGraw Hill, 1980.

(5 hrs.)