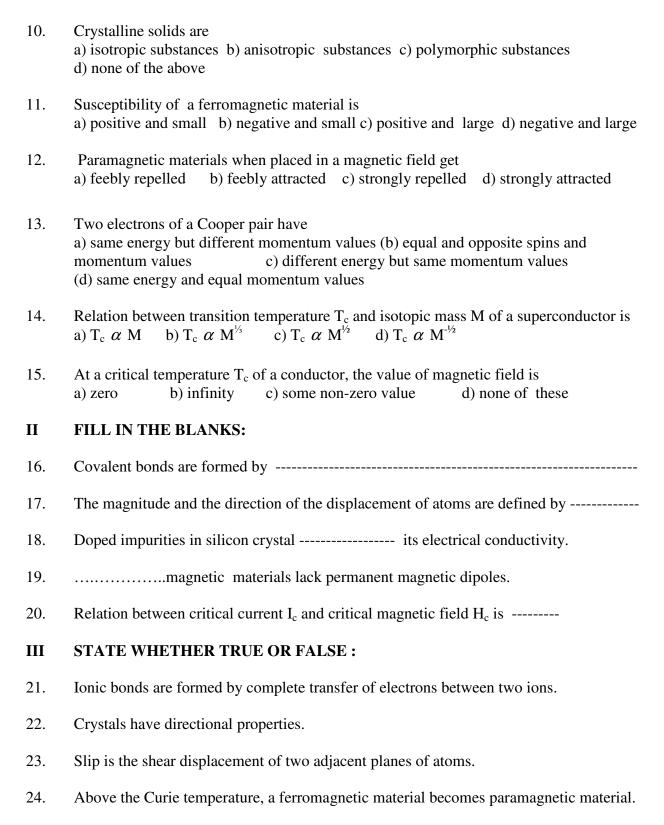
STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.


(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/SS64

B.Sc. DEGREE EXAMINATION APRIL 2010

BRANCH III - PHYSICS SIXTH SEMESTER

]	REG. N	0
COUR PAPEI TIME			OR – CORE D STATE PH NS.		CTION – A	MAX.	MARKS: 30
TO BE	E ANSWERED	IN TH	E QUESTION				
ANSW	ER ALL QUE	ESTION	S:				$(30 \times 1 = 30)$
I 1.	CHOOSE TH Among the fo a) metallic bo	llowing		is strong		d) cov	alent bond
2.	When the bon a) remains co	_			d energy o decreases	d) no	ne of the above
3.	During the for a) some energ c) some energ	y is los	t		rgy remains co e of the above	onstant	
4.	Van der Waals' bonds are a) non-directional b) directional c) unidirectional d) none of the above						
5.	Tetrahedral boa) covalent bo	_	is characterist b) metallic bo		c) ionic bond	s d) mo	lecular bonds
6.	Primary bonda a) intermolec c) interatomic	ular for	ces		n der Waals' ty ole interaction	-	
7.	Madelung cor a) 17.475		NaCl is 17475 c) 1.7	475	d) 25.0312		
8.	Dislocations a a) line defect		b) plane defe	ects	c) chemical d	efects	d) point defects
9.	Errors in char a) vacancies	ge distr	bution in solid b) interstitial		in c) volume de	fects	d) electronic defects

Type I superconductors have two critical fields.

25

[V]	ANSWER	IN ONE OR	R TWO SENTENSES

- 26. Define bond energy.
- 27. What is Frenkel defect?
- 28. State Wiedemann Franz law.
- 29. What is Meissner effect in superconductors?
- 30. What is Josephson's effect in superconductivity?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/SS64

B.Sc. DEGREE EXAMINATION APRIL 2010

BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR - CORE

PAPER : **SOLID STATE PHYSICS**

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Explain the potential energy diagram of ionic molecule with a neat sketch.
- 2. Explain what is Schottky defect with a neat sketch and example.
- 3. a) What are colour centers?
 - b) Briefly explain any two types of colour centers present in crystals.
- 4. Calculate the mobility, relaxation time and drift velocity of the electrons in silver if the field intensity in the material is 1 volt / cm. Given: the resistivity = $1.54 \times 10^{-8} \Omega$ m at room temperature and the electron density = 5.8×10^{28} / m³.
- 5. a) What are ferrites?
 - b) Mention any six applications of ferrites.
- 6. a) Prove that superconductors are perfect diamagnetic in nature
 - b) Mention any four applications of superconductors.
- 7. a). What is BCS theory?
 - b). Enumerate the important results of BCS theory.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Explain with suitable example and diagram the ionic, covalent and metallic bonds in solids.
- 9. Write short notes on
- a). Edge dislocation b). Grain boundaries c). Crystal growth (any one method)
- 10. a) What is Hall effect?
 - b) Obtain an expression for the Hall coefficient.
 - b) Describe an experimental setup for the measurement of Hall voltage.

/2/

- 11. Discuss Langevin's theory of paramagnetism and obtain an expression for the paramagnetic susceptibility.
- 12. a). Derive first and second London equations and hence explain the phenomenon of superconductivity using them.
 - b). The superconducting transition temperature of lead is 7.26 K.The magnetic field at 0 K is $64 \times 10^3 \text{ A}$ / m. Calculate the critical magnetic field at 5 K.
