STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2008-09)

SUBJECT CODE : MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2010 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	: MAJOR CORE	
PAPER	: SEQUENCES AND SERIES, FOURIER SER	IES
TIME	: 3 HOURS	MAX. MARKS :

SECTION - A

ANSWER ALL THE QUESTIONS:

(10X2=20)

100

- 1. Define characteristic function of a set.
- 2. Define a countable set.
- 3. Define monotone sequence.
- 4. Define cauchy sequence.
- 5. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then prove that $\lim_{n\to\infty} a_n = 0$.
- 6. Give an example of a function which converges pointwise to f on [0,1].
- 7. State the fundamental theorem on alternating series.
- 8. State comparison test.
- 9. Define absolute convergence of a series.
- 10. Define even and odd function.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. Prove that countable union of countable sets in countable.
- 12. Prove that if $\{s_n\}_{n=1}^{\infty}$ is a sequence of nonnegative numbers and if $\lim_{n\to\infty} S_n = L$ then $L \ge 0$.
- 13. If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequences of real numbers, if $\lim_{n\to\infty} S_n = L$ and $\lim_{n\to\infty} t_n = M$ then prove that $\lim_{n\to\infty} S_n t_n = LM$.
- 14. State and prove the nested interval theorem.
- 15. Prove that if $\sum_{n=1}^{\infty} a_n$ converges absolutely then $\sum_{n=1}^{\infty} a_n$ converges.
- 16. State and prove Pringsheim's theorem.
- 17. Find a Sine series for f(x) = c in the range 0 to π .

(5X8=40)

SECTION – C

ANSWER ANY TWO QUESTIONS:

(2X20=40)

- 18. a) Prove that $\left\{\frac{2n}{n+4n^{1/2}}\right\}_{n=1}^{\infty}$ converges to 2. b) Prove that $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty}$ is convergent.
- 19. a) State and prove the ratio rest.
 - b) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and prove that $\sum_{n=4}^{\infty} \frac{1}{(nlogn)}$ diverges.

20. Show that
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2}$$
 in the interval $(-\pi \le x \le \pi)$.
Deduce that (i) $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$
(ii) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$
(iii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} - \dots = \frac{\pi^2}{8}$