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Abstract

The field of medicine and decision making are the most fruitful and
interesting area of applications of fuzzy set theory. In real life situ-
ations, the imprecise nature of medical documentation and uncertain
information gathered for decision making requires the use of “fuzzy”.
In this paper, procedures are presented for medical diagnosis and for
fuzzy decision model. Examples are illustrated to verify the proposed
approach.
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1 INTRODUCTION

In recent years fuzzy set theory and fuzzy logic are highly suitable and ap-
plicable for developing knowledge based system in medicine for the tasks of
medical findings. There are variety of models involving fuzzy matrices to deal
with different complicated aspects of medical diagnosis. Sanchez formulated
the diagnostic models involving fuzzy matrices representing the medical knowl-
edge between symptoms and diseases [9, 10]. Esogbue and Elder [5] utilized
fuzzy cluster analysis to model medical diagnostic. Meenakshi and Kaliraja
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[7] have extended Sanchez’s approach for medical diagnosis using the repre-
sentation of a interval valued fuzzy matrix. They have also introduced the
arithmetic mean matrix of an interval valued fuzzy matrix and directly ap-
plied Sanchez’s method of medical diagnosis on it. Baruah [1, 2] used the
definition of complement of a fuzzy soft set proposed by Neog and Sut [8] and
put forward a matrix representation of fuzzy soft set and extended Sanchez’s
approach for medical diagnosis. Edward Samuel and Balamurugan [4] studied
Sanchez’s approach for medical diagnosis using Intuitionistic fuzzy set.

Fuzzy set theory also plays a vital role in the field of Decision Making.
Decision Making is a most important scientific, social and economic endeavour.
In classical crisp decision making theories, decisions are made under conditions
of certainty but in real life situations this is not possible which gives rise to
fuzzy decision making theories. For decision making in fuzzy environment one
may refer Bellman and Zadeh [3]. Most probably the fuzzy decision model
in which overall ranking or ordering of different fuzzy sets are determined by
using comparison matrix, introduced and developed by Shimura [11].

The paper is organized as follows: In section 2, basic definitions of fuzzy
set theory have been reviewed. In section 3, a novel approach is presented for
medical diagnosis which is also an extension of Sanchez’s approach with modi-
fied procedure using triangular fuzzy number matrices and its new membership
function. In section 4, a procedure is proposed for fuzzy decision model using
new relativity function and comparison matrix. In both the sections illustra-
tive example is included to demonstrate the proposed approach. Section 5,
concludes the paper.

2 PRE-REQUISITES

Definition 2.1 Triangular fuzzy number
Triangular fuzzy number is denoted as

A = (a1, a2, a3), a1, a2, a3 ∈ <, a1 < a2 < a3.

Definition 2.2 Triangular fuzzy number matrix
Triangular fuzzy number matrix of order m × n is defined as A = (aij)m×n
where aij = (aijL, aijM , aijU) is the ijth element of A. aijL, aijU are the left and
right spreads of aij respectively and aijM is the mean value.

Definition 2.3 Addition and Subtraction Operation on triangular
fuzzy number matrix
Let A = (aij)n×n and B = (bij)n×n be two triangular fuzzy number matrices of
same order. Then
(i) Addition Operation
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A(+)B = (aij + bij)n×n where
aij + bij = (aijL + bijL, aijM + bijM , aijU + bijU) is the ijth element of A(+)B
(ii) Subtraction Operation
A(−)B = (aij − bij)n×n where
aij − bij = (aijL − bijU , aijM − bijM , aijU − bijL) is the ijth element of A(−)B
The same condition holds for triangular fuzzy membership number.

Definition 2.4 Multiplication Operation on Triangular fuzzy num-
ber matrix
Let A = (aij)m×p and B = (bij)p×n be two triangular fuzzy number matrices.
Then the Multiplication Operation:
A(·)B = (cij)m×n, where

(cij) =

p∑
k=1

aik · bkj for i = 1, 2, . . . ,m and j = 1, 2, . . . ., n.

Definition 2.5 Max-Min Composition on fuzzy membership value
matrices
Let Fmn denote the set of all m×n matrices over F . Elements of Fmn are called
as fuzzy membership value matrices. For A = (aij) ∈ Fmp and B = (bij) ∈ Fpn
the max-min product A(·)B = (supk[{inf{aik, bkj}}]) ∈ Fmn.

Definition 2.6 Maximum Operation on triangular fuzzy number
Let A = (aij)n×n where aij = (aijL, aijM , aijU) and B = (bij)n×n where bij =
(bijL, bijM , bijU) be two triangular fuzzy number matrices of same order. Then
the maximum operation on it is given by Lmax = max(A,B) = (sup{aij, bij})
where sup{aij, bij} = (sup(aijL, bijL), sup(aijM , bijM), sup(aijU , bijU)) is the ijth

element of max(A,B).

Definition 2.7 Arithmetic Mean (AM) for triangular fuzzy num-
ber
Let A = (a1, a2, a3) be a triangular fuzzy number then AM(A) = a1+a2+a3

3
. The

same condition holds for triangular fuzzy membership number.

3 MEDICAL DIAGNOSIS UNDER FUZZY

ENVIRONMENT

Let S be the set of symptoms of certain diseases, D is a set of diseases and
P is a set of patients. The elements of triangular fuzzy number matrix are
defined as

A = (aij)m×l where aij = (aijL, aijM , aijU) is the ijth element of A,

0 ≤ aijL ≤ aijM ≤ aijU ≤ 10. (1)
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Here aijL is the lower bound, aijM is the moderate value and aijU is the upper
bound.

Procedure 3.1
Step 1: Construct a triangular fuzzy number matrix (F,D) over S, where F
is a mapping given by F : D → F̃ (S), F̃ (S) is a set of all triangular fuzzy sets
of S. This matrix is denoted by R0 which is the fuzzy occurrence matrix or
symptom-disease triangular fuzzy number matrix.
Step 2: Construct another triangular fuzzy number matrix (F1, S) over P ,
where F1 is a mapping given by F1 : S → F̃ (P ). This matrix is denoted by
RS which is the patient-symptom triangular fuzzy number matrix.
Step 3: Convert the elements of triangular fuzzy number matrix into its
membership function as follows:
Membership function of aij = (aijL, aijM , aijU) is defined as

µaij =
(aijL

10
,
aijM
10

,
aijU
10

)
, if 0 ≤ aijL ≤ aijM ≤ aijU ≤ 10 (2)

where 0 ≤ aijL
10
≤ aijM

10
≤ aijU

10
≤ 1.

Now the matrix R0 and RS are converted into triangular fuzzy membership
matrices namely (R0)mem and (RS)mem.
Step 4: Compute the following relation matrices.
R1 = (RS)mem(·)(R0)mem it is calculated using Definition 2.5.
R2 = (RS)mem(·)(J(−)(R0)mem), where J is the triangular fuzzy membership
matrix in which all entries are (1, 1, 1). (J(−)(R0)mem) is the complement of
(R0)mem and it is called as non symptom-disease triangular fuzzy membership
matrix.
R3 = (J(−)(RS)mem)(·)(R0)mem, where (J(−)(RS)mem) is the complement of
RS and it is called as non patient-symptom triangular fuzzy membership ma-
trix.
R2 and R3 are calculated using subtraction operation and Definition 2.5.
R4 = max{R2, R3}. It is calculated using Definition 2.6.
The elements of R1, R2, R3, R4 is of the form yij = (yijL, yijM , yijU) where
0 ≤ yijL ≤ yijM ≤ yijU ≤ 1.
R5 = R1(−)R4. It is calculated using subtraction operation. The elements of
R5 is of the form zij = (zijL, zijM , zijU) ∈ [−1, 1] where zijL ≤ zijM ≤ zijU .
Step 5: Calculate R6 = AM(zij) and Row′i = Maximum of ith row which
helps the decision maker to strongly confirm the disease for the patient.

Illustrative Example 3.1:
Suppose there are three patient’s P1, P2 and P3 in a hospital with symptoms
temperature, headache, cough and stomach problem. Let the possible diseases
relating to the above symptoms be viral fever and malaria.
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Step 1: We consider the set S = {s1, s2, s3, s4} as universal set where s1, s2, s3
and s4 represent the symptoms temperature, headache, cough and stomach
problem respectively and the set D = {d1, d2} where d1 and d2 represent the
parameters viral fever and malaria respectively. Suppose that

F (d1) = [< e1, (7, 8.5, 10) >,< e2, (1, 2.5, 4) >,< e3, (5, 5.5, 6) >,

< e4, (2, 3, 4) >]

F (d2) = [< e1, (6, 7.5, 9) >,< e2, (4, 5, 6) >,< e3, (3, 4.5, 6) >,

< e4, (8, 9, 10) >]

The triangular fuzzy number matrix (F,D) is a parameterized family (F (d1), F (d2))
of all triangular fuzzy number matrix over the set S and are determined from
expert medical documentation. Thus the triangular fuzzy number matrix
(F,D) represents a relation matrix R0 and it gives an approximate description
of the triangular fuzzy number matrix medical knowledge of the two diseases
and their symptoms given by

R0 =

d1 d2
s1
s2
s3
s4


(7,8.5,10) (6,7.5,9)
(1,2.5,4) (4,5,6)
(5,5.5,6) (3,4.5,6)
(2,3,4) (8,9,10)


Step 2: Again we take P = {p1, p2, p3} as the universal set where p1, p2 and p3
represent patients respectively and S = {s1, s2, s3, s4} as the set of parameters
suppose that,
F1(s1) = [< p1, (6, 7.5, 9) >,< p2, (3, 4, 5) >,< p3, (6, 7, 8) >]
F1(s2) = [< p1, (3, 4, 5) >,< p2, (3, 5, 7) >,< p3, (2, 4, 6) >]
F1(s3) = [< p1, (8, 9, 10) >,< p2, (2, 3, 4) >,< p3, (5, 6, 7) >]
F1(s4) = [< p1, (6, 7.5, 9) >,< p2, (3, 4, 5) >,< p3, (2, 3.5, 5) >]
The triangular fuzzy number matrix (F1, S) is another parameterized family
of triangular fuzzy number matrix and gives a collection of approximate de-
scription of the patient-symptoms in the hospital. Thus the triangular fuzzy
number matrix (F1, S) represents a relation matrix RS called patient-symptom
matrix given by

RS =

s1 s2 s3 s4
p1
p2
p3

 (6,7.5,9) (3,4,5) (8,9,10) (6,7.5,9)
(3,4,5) (3,5,7) (2,3,4) (3,4,5)
(6,7,8) (2,4,6) (5,6,7) (2,3.5,5)


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Step 3:

(R0)mem =

d1 d2
s1
s2
s3
s4


(0.7,0.85,1) (0.6,0.75,0.9)

(0.1,0.25,0.4) (0.4,0.5,0.6)
(0.5,0.55,0.6) (0.3,0.45,0.6)
(0.2,0.3,0.4) (0.8,0.9,1)



(RS)mem =

s1 s2 s3 s4
p1
p2
p3

 (0.6,0.75,0.9) (0.3,0.4,0.5) (0.8,0.9,1) (0.6,0.75,0.9)
(0.3,0.4,0.5) (0.3,0.5,0.7) (0.2,0.3,0.4) (0.3,0.4,0.5)
(0.6,0.7,0.8) (0.2,0.4,0.6) (0.5,0.6,0.7) (0.2,0.35,0.5)


Step 4: Computing the following relation matrices

R1 = (RS)mem(·)(R0)mem =

d1 d2
p1
p2
p3

 (0.6,0.75,0.9) (0.6,0.75,0.9)
(0.3,0.4,0.5) (0.3,0.5,0.6)
(0.6,0.7,0.8) (0.6,0.7,0.8)



R2 = (RS)mem(·)(J(−)(R0)mem) =

d1 d2
p1
p2
p3

 (0.6,0.7,0.8) (0.4,0.55,0.7)
(0.3,0.5,0.7) (0.3,0.5,0.6)
(0.4,0.45,0.6) (0.4,0.55,0.7)



R3 = (J(−)(RS)mem)(·)(R0)mem =

d1 d2
p1
p2
p3

 (0.1,0.25,0.4) (0.4,0.5,0.6)
(0.5,0.6,0.7) (0.5,0.6,0.7)
(0.3,0.4,0.5) (0.5,0.65,0.8)



R4 = max{R2, R3} =

d1 d2
p1
p2
p3

 (0.6,0.7,0.8) (0.4,0.55,0.7)
(0.5,0.6,0.7) (0.5,0.6,0.7)
(0.4,0.45,0.6) (0.5,0.65,0.8)



R5 = R1(−)R4 =

d1 d2
p1
p2
p3

 (-0.2,0.05,0.3) (-0.1,0.2,0.5)
(-0.4,-0.2,0) (-0.4,-0.1,0.1)
(0,0.25,0.4) (-0.2,0.05,0.3)


Step 5:

R6 =

d1 d2 Row′i = Maximum of ith row
p1
p2
p3

 0.05 0.2
-0.2 -0.13
0.22 0.05

 0.2
-0.13
0.22

This can be represented in the form of a graph namely network as follows:



Application of fuzzy membership matrix 6303

Figure 1: Fuzzy Medical Diagnosis Network

In the above network, nodes or vertices denote the patients and diseases,
lengths or edges denote the assumption of diseases to the patients. The darken
edges denotes the strong confirmation of disease to the patient.

4 DECISION MAKING UNDER FUZZY EN-

VIRONMENT

When we compare objects that are fuzzy or vague, we may have a situation
where there is a contradiction of transitivity in the ranking. This form of non-
transitive ranking can be accommodated by means of relativity function which
is defined as a measurement of the membership value of choosing one variable
over the other [6].

Definition 4.1 Relativity function
Let x and y be variables defined on a universal set X. The relativity function
is denoted as f(x/y) and is defined as

f(x/y) =
µy(x)(−)µx(y)

max{µy(x), µx(y)}
(3)

where µy(x) is the membership function of x with respect to y for triangular
fuzzy number and µx(y) is the membership function of y with respect to x for
triangular fuzzy number. Here µy(x)(−)µx(y) is calculated using subtraction
operation and max{µy(x), µx(y)} is calculated using Definition 2.6.

Definition 4.2 Comparison Matrix
Let A = {x1, x2, . . . , xi−1, xi, xi+1, . . . , xn} be a set of n variables defined on
X. Form a matrix of relativity values f(xi/xj) where xi’s for i = 1 to
n, are n variables defined on an universe X. The matrix C = (cij) is a
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square matrix of order n is called the comparison matrix (or) C-matrix, with

AM(f(xi/xj)) =
AM(µxj (xi)(−)µxi (xj))

AM(max{µxj (xi),µxi (xj)})
where AM denote the Arithmetic Mean

and it is calculated using Definition 2.7. The comparison matrix is used to rank
different fuzzy sets, the elements of C-matrix ∈ [−1, 1]. The smallest value in
the ith row of the comparison matrix, that is C ′i = min{f(xi/X), i = 1 to n}
is the membership value of the ith variable. The minimum of {C ′i/i = 1 to n},
that is, the smallest value in each of the rows of the C-matrix will have the
lowest weight for ranking purpose. Thus ranking the variables x1, x2, . . . , xn
are determined by ordering the membership values C ′1, C

′
2, . . . , C

′
n.

Procedure 4.1
Step 1: Gather the imprecise estimations needed for the problem which is in
the form of triangular fuzzy number matrix using eqn. (1).
Step 2: Calculate the triangular membership matrix using eqn. (2).
Step 3: By using eqn. (3) let us calculate all of the relativity values f(xi/xj).
Form the comparison matrix using Definition 4.2, this gives the solution to the
required problem. Here f(xi/xj) = (0,0,0)

(1,1,1)
for i = j.

Illustrative Example 4.1:
Step 1: Let us find out who resembles a father ‘most’ among his elder son (x1),
his younger son (x2) and his daughter (x3). We have the following imprecise
estimations from family members.

A =

x1 x2 x3
x1
x2
x3

 (10,10,10) (7,8,9) (3,5,7)
(3,5,7) (10,10,10) (6,7,8)
(3,5,7) (2,4,6) (10,10,10)


This can be represented in the form of a graph (network) as follows:

Figure 2: Fuzzy Decision Making Network
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Step 2:

(A)mem =

x1 x2 x3
x1
x2
x3

 (1,1,1) (0.7,0.8,0.9) (0.3,0.5,0.7)
(0.3,0.5,0.7) (1,1,1) (0.6,0.7,0.8)
(0.3,0.5,0.7) (0.2,0.4,0.6) (1,1,1)


µx1(x1) = (1, 1, 1), µx2(x1) = (0.7, 0.8, 0.9), µx3(x1) = (0.3, 0.5, 0.7)
µx1(x2) = (0.3, 0.5, 0.7), µx2(x2) = (1, 1, 1), µx3(x2) = (0.6, 0.7, 0.8)
µx1(x3) = (0.3, 0.5, 0.7), µx2(x3) = (0.2, 0.4, 0.6), µx3(x3) = (1, 1, 1)

Step 3:

f(x1/x1) =
µx1(x1)(−)µx1(x1)

max{µx1(x1), µx1(x1)}
=

(1, 1, 1)(−)(1, 1, 1)

max{(1, 1, 1), (1, 1, 1)}
=

(0, 0, 0)

(1, 1, 1)

AM(f(x1/x1)) =
0

1
= 0

f(x1/x2) =
µx2(x1)(−)µx1(x2)

max{µx2(x1), µx1(x2)}

=
(0.7, 0.8, 0.9)(−)(0.3, 0.5, 0.7)

max{(0.7, 0.8, 0.9), (0.3, 0.5, 0.7)}

=
(0, 0.3, 0.6)

(0.7, 0.8, 0.9)

AM(f(x1/x2)) =
0.3

0.8
= 0.375

f(x1/x3) =
µx3(x1)(−)µx1(x3)

max{µx3(x1), µx1(x3)}

=
(0.3, 0.5, 0.7)(−)(0.3, 0.5, 0.7)

max{(0.3, 0.5, 0.7), (0.3, 0.5, 0.7)}

=
(−0.4, 0, 0.4)

(0.3, 0.5, 0.7)

AM(f(x1/x3)) =
0

0.5
= 0

f(x2/x1) =
µx1(x2)(−)µx2(x1)

max{µx1(x2), µx2(x1)}
=

(−0.4,−0.3, 0)

(0.7, 0.8, 0.9)

AM(f(x2/x1)) = −0.29
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f(x2/x2) =
µx2(x2)(−)µx2(x2)

max{µx2(x2), µx2(x2)}
=

(0, 0, 0)

(1, 1, 1)

AM(f(x2/x2)) = 0

f(x2/x3) =
µx3(x2)(−)µx2(x3)

max{µx3(x2), µx2(x3)}
=

(0, 0.3, 0.6)

(0.6, 0.7, 0.8)

AM(f(x2/x3)) = 0.43

f(x3/x1) =
µx1(x3)(−)µx3(x1)

max{µx1(x3), µx3(x1)}
=

(−0.4, 0, 0.4)

(0.3, 0.5, 0.7)

AM(f(x3/x1)) = 0

f(x3/x2) =
µx2(x3)(−)µx3(x2)

max{µx2(x3), µx3(x2)}
=

(−0.6,−0.3, 0)

(0.6, 0.7, 0.8)

AM(f(x3/x2)) = −0.43

f(x3/x3) =
µx3(x3)(−)µx3(x3)

max{µx3(x3), µx3(x3)}
=

(0, 0, 0)

(1, 1, 1)

AM(f(x3/x3)) = 0

The comparison matrix C = (cij) = AM(f(xi/xj)) is given by

C =

x1 x2 x3 C ′i = minimum of ith row
x1
x2
x3

 0 0.375 0
-0.29 0 0.43

0 -0.43 0

 0
-0.29
-0.43

For this problem the ranking is x1, x2 and x3. Hence the elder son resembles
his father the ‘most’.

5 CONCLUSION

Medicine is one of the field in which the applicability of fuzzy set theory was
recognized quite early. The physician generally gathers knowledge about the
patient from the past history, laboratory test result and other investigative
procedures such as x-rays and ultra sonic rays etc. The knowledge provided
by each of these sources carries with it varying degrees of uncertainty. Thus
the best and most useful descriptions of disease entities often use linguistic
terms that are vague.

As fuzzy decision making is a most important scientific, social and eco-
nomic endeavour, there exist several major approaches within the theories of
fuzzy decision making. Here we have used the ranking order to deal with the
vagueness in imprecise determination of preferences.

Hence in this paper, Fuzzy set framework has been utilized in several differ-
ent approaches to model the medical diagnostic process and decision making
process.



Application of fuzzy membership matrix 6307

References

[1] H.K. Baruah, Towards forming a field of fuzzy sets, International Journal
of Energy, Information and Communications, 2(1) (2011), 16 - 20.

[2] H.K. Baruah, The theory of fuzzy sets: Beliefs and Realities, International
Journal of Energy, Information and Communication, 2(2) (2011), 1 - 22.

[3] R. Bellman and L.A. Zadeh, Decision Making in a fuzzy environment,
Management Science, 17 (1970), B144-B164.

[4] A. Edward Samuel and M. Balamurugan, Application of intuitionistic
fuzzy sets in medical diagnosis, Proceeding of the International Conference
on Mathematical Modeling and Applied Soft Computing 1 (2012), 189 -
194.

[5] A.O. Esogbue and R.C. Elder, Fuzzy Diagnosis decision models, Fuzzy
sets and systems, 3 (1980), 1 - 9.

[6] A.R. Meenakshi, Fuzzy Matrix theory and applications, MJP publishers,
2008.

[7] A.R. Meenakshi and M. Kaliraja, An Application of Interval valued fuzzy
matrices in Medical Diagnosis, International Journal of Mathematical
Analysis, 5(36) (2011), 1791 - 1802.

[8] T.J. Neog and D.K. Sut, Theory of fuzzy soft sets from a new perspective,
International Journal of Latest Trends in Computing, 2(3) (2011), 439 -
450.

[9] E. Sanchez, Resolution of composite fuzzy relation equations, Information
and control, 30 (1976), 38 - 48.

[10] E. Sanchez, Inverse of fuzzy relations, application to possibility distri-
bution and medical diagnosis, Fuzzy sets and systems, 2(1) (1979), 75 -
86.

[11] M. Shimura, Fuzzy sets concept in rank ordering objects, J. Math. Anal.
Appl., 43 (1973), 717 - 733.

Received: August 30, 2013


