B. A. DEGREE EXAMINATION, APRIL 2008
 BRANCH IV - ECONOMICS
 FOURTH SEMESTER

COURSE : MAJOR - CORE
 PAPER : MATHEMATICAL METHODS - II
 TIME : 3 HOURS.
 MAX. MARKS : 100
 SECTION - A
 ANSWER ALL QUESTIONS. EACH ANSWER NOT TO EXCEED 50 WORDS:

($10 \times 3=30$)

1. Define Matrix. What is order of a matrix?
2. Distinguish between trace of a square matrix and trace of an Identity Matrix.
3. If $A=\left[\begin{array}{ll}9 & 1 \\ 4 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 5 \\ 7 & 12\end{array}\right]$. Find the matrix X such that $3 A+5 B+2 X=0$.
4. Prove $(A B)^{\prime}=B^{\prime} A^{\prime}$ with suitable example.
5. What is the co-factor of an element $\left(a_{1}\right)$ in the third order determinant of the matrix.
6. Differentiate between closed and open Input-Output Models.
7. Test the viability of technology matrix:

	Steel	Coal	Final demand
Steel	0.4	0.1	50
Coal	0.7	0.6	100
Labour	5	2	

8. Distinguish between structured constraints and non-negativity constraints in the LPP.
9. Define convex sets.
10. What is simplex method?

SECTION - B

ANSWER ANY FIVE QUESTIONS. EACH ANSWER NOT TO EXCEED 300 WORDS.
11. Suppose three industries A, B \& C intend to produce some machines. They find that prices of the different items like bolts, nuts and screw to assemble machines at a particular firm are as follows.
(a) Rs 20 per Bolt
(b) Rs 30 per nut \&
(c) Rs 30 per screw Industries A, B \& C wish to order the different items as follows.

	Bolts	Nuts	Screws
A	2	2	3
B	3	3	3
C	4	4	2

How much will they have to pay for this whole lot?
12. Prove the following determinant without expanding:
$\left|\begin{array}{ccc}38 & 34 & 30 \\ 18 & 16 & 14 \\ 2 & 2 & 2\end{array}\right|=0$
13. Find the value of $\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$
14. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{array}\right]$
15. Explain the Cramer's Rule with suitable illustration.
16. Explain the co-efficient matrix of an open input-output model in value terms.
17. A farmer produces 2 products A and B with unit profits of Rs. 6 and Rs. 3 respectively. These products require two types of fertilisers and the total available quantities of fertiliser are 60 kg of fertiliser I and 200 kg of fertiliser II. 2 units of F_{1} and 4 units of F_{2} are required to produce A and $1 / 4$ units of F_{1} and 2 units of F_{2} are required to produce B.
Write out a complete linear programming formulation (fertiliser I: F_{1}; fertiliser II; F_{2})

SECTION - C

ANSWER ANY TWO QUESTIONS. EACH ANSWER NOT TO EXCEED 1,200 WORDS
 ($2 \times 20=40$)

18. a) Define (i) Diagonal matrix
(ii) Identity matrix (iii) Triangular matrix
(iv) Symmetric matrix
(v) Idempotent matrix
(10)
b) If $A=\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right) \quad B=\left(\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right)$ and $C=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
find
(i) $A B$
(ii) $A B^{\prime}$
(iii) $A^{\prime} B^{\prime}$
(iv) $(A B)^{\prime}$
(v) $(A+B)^{\prime}$
(vi) $(A B C)^{\prime}$
19. Solve for x, y and z from the following set of equations by inverse matrix method.

$$
\begin{align*}
& x-2 y+3 z=1 \tag{10}\\
& 3 x-y+4 z=3 \\
& 2 x+y-2 z=-1
\end{align*}
$$

20. Solve the following Linear Programming problem by simplex method.

Maximize $Z=20 X_{1}+25 X_{2}$
Subject to $12 X_{1}+16 X_{2} \leq 100$

$$
\begin{gathered}
16 X_{1}+8 X_{2} \leq 80 \\
X_{1}, X_{2} \geq 0
\end{gathered}
$$

21. From the following matrix, find the final output goals of each industry assuming that the consumer output target are Rs. 85 million in steel, Rs. 25 million in coal and Rs. 55 in railway transport.

	Steel	Coal	Railway Transport
Steel	0.4	0.1	0.2
Coal	0.2	0.2	0.4
Railway Transport	0.2	0.3	0.3
Labour	0.2	0.4	0.1

What would be the labour requirements of the final outputs of three industries?

