STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/MC/TS24

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH III - PHYSICS SECOND SEMESTER

		SECOND SEN	MESTER				
	SE : MAJOR – CORE			No			
COURS PAPER				MECHANICS			
		MINS.	ND STATISTICAL	MAX. MARKS: 30			
		SECTION	N - A				
	TO BE A	NSWERED IN THE Q	UESTION PAPER	ITSELF			
ANSWI	ER ALL QUEST	$(30 \times 1 = 30)$					
I (CHOOSE THE	CORRECT ANSWER:					
1. 5	. Stefan-Boltzmann law is						
8	a. E=σT	b. $E=\sigma T^2$	c. $E=\sigma T^3$	d. $E=\sigma T^4$			
2	law holds well in the region of longer wavelengths.						
8	a. Planck's	b. Rayleigh-Jeans	c. Stefan's	d. Wien's			
3. \	Wien's displacement law is equal to constant.						
8	a. σT ⁴	b. $\lambda_m T$	c. oT	d. λ_m/T			
4.	Thermodynamics is concerned with the relation of to mechan						
8	a. heat	b. pressure	c. entropy	d.enthalpy			
5. I	First law of thermodynamics represents						
8	a. dQ=dU-dW	b. dU=dW+dQ	c. dW=dU+dQ	d. dQ=dU+dW			
6. (Coefficient of performance of a refrigerator is						
8	a. $(Q_2-Q_1)/Q_2$	b. $Q_2/(Q_1-Q_2)$	c. $(Q_1-Q_2)/Q_1$	d. $Q_1/(Q_1-Q_2)$			
7. J	Unit of entropy is		·				
8	a. J/S	b. J/N	c. J/K	d. J/Kg			
8.	The unattainability principle is called of t			the thermodynamics.			
8	a. zeroth law	b. first law	c. second law	d. third law			

II

probable velocity.

...3

IV ANSWER BRIEFLY:

26.	Define	mean	free	nath.

27. Mention any two thermodynamic coordinates of the system.

28. Define heat engine.

29. Define Joule-Thomson effect.

30. Define phase space.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-2012 & thereafter)

SUBJECT CODE: 11PH/MC/TS24

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH III - PHYSICS SECOND SEMESTER

COURSE : MAJOR - CORE

PAPER : THERMAL PHYSICS AND STATISTICAL MECHANICS

TIME : 2 ½ HOURS MAX. MARKS: 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Deduce the expression for mean free path.
- 2. State and explain Clausius and Kelvin statement of second law of thermodynamics.
- 3. Calculate the efficiency of the Carnot's engine working between the temperatures 227°C and 15°C.
- 4. Calculate the change in entropy when 10 grams of ice at 0°C is converted into water at the same temperature. (latent heat of ice is 80 cal/gm)
- 5. Show that $C_p C_v = R$ by using Maxwell's thermodynamics relation.
- 6. Derive first and second TdS equations.
- 7. At what temperature a black body will radiate thermal energy at the rate of 1 watt per square cm.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Deduce the expression for the coefficient of viscosity of the gases.
- 9. Derive the relation between isothermal and adiabatic elasticity.
- 10. Explain the change in entropy in a reversible and an irreversible process.
- 11. Deduce Clausius-Clapeyron's latent heat equation.
- 12. Compare Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics.