STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/MC/SE64

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH III - PHYSICS SIXTH SEMESTER

	REG. No							
COUR PAPER TIME		MAJOR – CORE SEMICONDUCTOR ELECTRONICS					X. MARKS: 30	
TO BE	ANSWER	ED IN TH	E QUESTIC					
I Ch	ER ALL Q	rrect Ans	wer:				$(30 \times 1 = 30)$	
1.			ified into					
	a. tw		b. thre		c. four		d. five	
2.			PN ju					
	a. fiv		b. fou		c. three		d. two	
3.	The input in	npedance o	of a transistor	is		·		
	a. ze	ro	b. lov	V	c. high	l	d. infinity	
4.	An ideal val	ue of stabi	lity factor is					
	a. ze	ro	b. one	;	c. hund	dred	d. infinity	
5.	The operating	ng point is	also called th	e	·			
	a. cu	toff point			b. end point			
	c. sa	turation po	int		d. quiescent pe	oint		
6.	Transistor biasing represents				conditions.			
	a. d.	c	b. a.c.	c. both	d.c and a.c	d. ne	one of the above	
7.	R.C. couplir	ng is used t	for		amplification.			
	a. cu	rrent	b. sou	nd	c. pow	er	d. voltage	
8.	A JFET has	three term	inals, namely					
	a. anode, cathode, grid				b. emitter, base, collector			
	c. source, drain, gate				d. +V _{cc} , GND	, -V _{cc}		
9.	A JFET is also called				transistor			
					c. tripolar		d. unijunction	
10.	A UJT is a _		ter	minal se	miconductor d	evice.		
	a. on)			d. four	
11.	The output i	mpedance	of an ideal of	oamp is		•		
	a. 0	-	b. 1		c. 100		d. ∞	

	12. A signal applied to the negative terminal of an op-amp will be shifted in								
	phase at the output.								
	a. 0°	b. 90°	c. 180°	d. 270°					
	13. The closed loop gain of the voltage follower is								
	a. 1	b. 100	c. 1000	d. ∞					
	14. The op-amp chip number is								
	a. 7400	b. 7402	c. 7486	d. 741					
	15. The 0V at the inverting input terminal of an op-amp is referred to as								
	a. subtractor		b. comparator						
	c. virtual ground	l	d. common ground						
II	Fill in the blanks:								
	16. The point of intersection of d.c and a.c load lines is the								
	•								
	17. When no signal is applied to a transistor circuit it is said to be in the								
		·							
	18. A FET hasinput impedance and low noise level.								
	19. A UJT has PN junction.								
	20. CMRR isfor a differential amplifier.								
Ш	State whether true or fa	lse:							
	21. When a.c signal is applied, the operating point moves along d.c load line.								
	22. A transistor is used as an amplifier.								
	23. The parameters of UJT are drain resistance, transconductance and amplification factor.								
	24. An ideal OPAMP has an infinite voltage gain.								

25. The function of a D/A converter is opposite that of an A/D converter.

IV Answer briefly:

26. What is transistor biasing?

27. What is multistage transistor amplifier?

28. What is pinch off voltage?

29. Define CMRR.

30. What is ADC?

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/MC/SE64

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH III - PHYSICS SIXTH SEMESTER

COURSE : MAJOR - CORE

PAPER : SEMICONDUCTOR ELECTRONICS

TIME : 2 ½ HOURS MAX. MARKS: 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Mention the advantages and disadvantages of base resistor transistor biasing method.
- 2. Distinguish between FET and bipolar transistor.
- 3. The intrinsic stand off ratio for a UJT is determined to be 0.6. If the inter-base resistance is $10K\Omega$. What are the values of R_{B1} and R_{B2} ?
- 4. Find the output voltage for the inverting amplifier circuit. Assume R_{in} = 20 K Ω , R_F = 200 K Ω and V_{in} =1 volt. And draw the circuit by using opamp.
- 5. Find the output voltage for the inverting summing amplifier circuit.

Assume R_1 = 100 K Ω , R_2 = 50 K Ω , R_F = 100 K Ω and V_1 =2 volts and V_2 =3 volts. And draw the circuit by using opamp.

- 6. Solve the following simultaneous equations by using Opamp x+y=5, x-y=1.
- 7. Explain D/A converter using binary weighted resistor method.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Describe the voltage divider biasing method in detail.
- 9. With a neat circuit diagram, explain the working of RC coupled transistor amplifier.
- 10. Explain UJT relaxation oscillator with necessary circuit.
- 11. Explain how an Opamp can be used as
 - (i) an adder
 - (ii) an integrator
 - (iii) a differentiator.
- 12. Explain A/D converter by using counter method.