STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH III - PHYSICS SIXTH SEMESTER REG. No.

D DED	:			TIVITY
TIME	:	30 MINS.	SECTION – A	MAX. MARKS : 30

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:

 $(30 \times 1 = 30)$

I Choose the Correct Answer:

- 1. The de Broglie wavelength of a molecule of thermal energy KT is given by (a) $h/\sqrt{2m}KT$ (b) h/2mKT (c) $h\sqrt{2m}KT$ (d) $1/h\sqrt{2m}KT$
- In Davisson and Germer experiment the angle between incident beam and diffracted beam is called ______.
 (a) angle of diffraction (b) angle of incidence (c) co-latitude (d) glancing angle.
- 3. The group velocity v_g with which a wave packet moves is (a) $v_g = d\omega/dk$ (b) $v_g = c$ (c) $v_g = c/2$ (d) $v_g = c/8$
- 4. If two operators A and B are hermitian, then their product (AB) is also hermitian, if and only if A and B
 (a) commute
 (b) do not commute
 (c) are non-zero
 (d) associate
- 5. Which one is not an example of potential barrier penetration:
 (a) emission of α -particle in the decay of radio-active nuclei.
 (b) periodic inversion of ammonia molecule.
 - (c) tunnel diode as a switch.
 - (d) free particle motion.

6. The general solution for a particle in a one dimensional box is (a) $th = A \sin kx + B \cos kx$ (b) $th = A \sin kx / B \cos kx$

(a) $\psi = A \sin \kappa A + D \cos \kappa A$	$(0) \psi = A \sin k A / D \cos k A$
(c) ψ = A cos kx / B sin kx	(d) $\psi = A \cos kx$

- 7. Which one is correct? (a) $[L^2,L]=0$ (b) $[[L^2,L]=1$ (c) $[L^2,L_z]=1$ (d) $[L^2,L_x]=1$
- 8. The potential energy (V) of the electron having charge e in the hydrogen atom of r is (a) $V = e^2/r$ (b) $V = -e^2/r$ (c) $V = 4e^2/r$ (d) $V = -4e^2/r$

9. -The wave function Ψ_m and $\Psi_n (m \neq n)$ will be orthogonal if (a) $\int \psi_m^* \psi_n dt = 1$ (b) $\int \psi_m^* \psi_n dt = 0$ (c) $\int \psi_m^* \psi_n dt = \infty$ (d) $\int \psi_m^* \psi_n dt$ = some finite value

10. The relativistic mass of a particle is twice its rest mass, what is the ratio of its speed to that of light.					
(a) $\sqrt{3/2}$	(b) 1/√2	(c) 1/2	(d) 1/4		
11. Which is invariant under(a) line element(c) 3-D volume element		(b) area element (d) time element			
12. An inertial frame is(a) accelerated(c) un accelerated		(b) decelerated(d) may be accelerated or unaccelerated			
13. A young lady of 25 years starts running at relativistic speed v ,then she would appear to her stationary friend as(a) thin and younger(b) fat and older(c) fat and younger(d) thin and older					
14. How will a square object observer?(a) square(b)	moving with relati rectangle	vistic speed 0.6c appea (c) triangle	r to a stationary (d) circular		
15. Which of the quanti (a) mass (b)	ties is invariant momentum	under special the (c) time	cory of relativity (d) acceleration.		
II Fill in the blanks:					
16. In Davisson and Germer experiment the angle at which the incident beam makes with					
the normal to the nickel crystal is					
17. The ground state energy of a linear harmonic oscillator is					
18. An operator is said to be Hermitian operator if it satisfies the condition					
19. An elevator falling freely under the action of gravity is a frame of					
reference.					

20. In momentum-four vector, the fourth component is ------.

III State whether true or false:

- 21. Electrons are particles that do not show wave-like behaviour.
- 22. Operator form of time dependent Schroedinger's equation is $H\Psi = E\Psi$
- 23. The fundamental commutation relation in quantum mechanics is $[x,p_x] = 0$
- 24. The stationary ether hypothesis cannot explain the results of Michelson-Morley experiment.
- 25. In pair annihilation energy is converted to mass.

IV Answer briefly:

- 26. What do you mean by wave particle duality Explain?
- 27. Give the physical significance of wave function.
- 28. What are eigen values and eigen functions?
- 29. Had Michelson Morley experiment given a positive result ,what would it have implied?
- 30. Give the equivalence between mass and energy. What is its importance?

.....

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE : 11PH/MC/QR64

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH III - PHYSICS SIXTH SEMESTER MA IOR – CORE

COURSE	:	MAJOK – COKE				
PAPER	:	QUANTUM MECHANICS AND RELATIVITY				
TIME	:	2 ¹ / ₂ HOURS	MAX. MARKS : 70			
SECTION – B						

ANSWER ANY FIVE QUESTIONS:

COIDCE

- 1. Derive an expression for the relationship between particle velocity and group velocity.
- Find the lowest energy of an electron confined to move in 1-D potential box of length1°A.
- 3. Write down the eigen values of operators L^2 and L_Z .
- 4. The lifetime of a μ -meson is 2.2x10⁻⁶sec when measured at rest. How far will it travel before decaying if its speed is 0.99c when it is created?
- 5. The speed of light in water is 3c/4 .Does this result violate the postulate of relativity? Why?
- 6. Discuss variation of mass with velocity. What are its consequences?
- 7. Obtain Schrodinger's time independent wave equation for matter waves and give its physical significance.

SECTION – C

ANSWER ANY THREE QUESTIONS:

(3 X 15 = 45)

 $(5 \times 5 = 25)$

- 8. What are matter waves? Describe an experiment in support of the existence of matter waves. Discus the results of the experiment.
- 9. Solve the linear harmonic oscillator problem quantum mechanically.
- 10. Using the ideas of separation of variables, explain how one arrives at the radial part of the Schrödinger's equation for a hydrogen.
- 11. Describe the Michelson –Morley experiment and explain the significance of the negative result.
- 12. Derive Lorentz transformation equations and show that when v<< c ,it tends to Galilean transformation. Discus the concept of relativity of simultaneity.
