STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/AC/PM23

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE PAPER TIME		ED – CORE SICS FOR MATHEM INS. SECTION		MAX. MARKS: 30
ANSWER A	TO BE ANS ALL QUESTIC	WERED IN THE QU ONS:	JESTION PAPER	R ITSELF (30x1=30)
1.On a mov	correct Answering charge of 20 ne points is	C by 2cm, 2J of work	is done, then the p	potential difference
a) 0.	1 V	b) 8V	c) 2V	d) 0.5V
	ctric flux entering harge inside the	ng and leaving an enclo surface will be	osed surface respec	ctively is φ_1 and φ_2 the
a) (¢	$\rho_1 + \phi_2) \epsilon_0$	b) $(\phi_2$ - $\phi_1) \epsilon_0$	c) zero	d) φ_2/ϵ_0
	on and a proton e more force	enter a magnetic field	with equal velocit	ies which one of them
a) El	ectron	b) proton	c) both d) cannot be predicted
		n carrying a current of d by the conductor is	1 A is placed in m	agnetic field of 0.5 tesla
a) 11	N	b) 0.5N	c) 2N	d) 3N
	e focal length of ation of the teles	the objective and f is t cope is	he focal length of	the eye piece then the
a) f/I	F	b) F/f	c) Fxf	d) -F/f
	R are the wave lone rings are prop	ength of light used and ortional to	radius of curvatur	re of the lens then the
a) 1/	λ	b) 1/R	c) $(r \lambda)^{1/2}$	d) \(\lambda R \)
7. The effec aberration	-	object point not situat	ted on the axis of t	he lens results in an
a) co	oma	b) spherical a	berration	
c) as	tigmatism	d) distortion		
8. To obtain	Fraunhoffer dif	fraction the incident w	ave front must be	
a) Sp	oherical	b) plane	c) elliptical	d) cylindrical

	oalsm respectively then		dex of ordinary extrac	ordinary and Canada
	a) μo= μE=, μc	b) μo< μE<μc	c) μο>μΕ>μc	d) μc >μE> μο
10. 4	An ideal op amp has			
	a) Infinite gain	b) infinite	input impedance	
	c) large band width	d) all the a	bove	
11. 7	\overline{A} B + \overline{B} A equal to			
	a) \overline{AB} +AB	b) AB	c) A+AB	d) $\overline{\overline{AB}}$ + AB
12.	The binary equivalent	of (0.8125)10 is		
	a) $(0.1101)_2$	b) (0.1010) ₂	c) $(0.1111)_2$	d) $(0.0010)_2$
13.]	If Ad and AC are differ	ential gain and comn	non mode gain then C	MRR is
	a) AC Ad	b) Ad/ AC	c) AC/ Ad	d) (AC/ Ad)1/2
	Let a parallel plate capa between the plates the o		•	of value 2 is filled
	a) 1 μF	b) 2Mf	c) 16 µF	d) 8 μF
15. ($(1010)_2 / (100)_2$ is			
	a) (10.1) ₂	b) (101) ₂	c) $(010)_2$	d) (1.01) ₂
Fill	in the blanks:			
16.	According to gauss law	the flux due to a cha	rge q is	·
	If the distance between of the capacitor is		•	alf then the capacitance
	The variation in the main an aberration called			axial distances results
	A ray of light propagati double refraction.	ng along		does not suffer
20. 4	According to Boolean a	algebra A(A+B) =		·
Stat	e whether TRUE/FAI	LSE:		
21.	A+BC=(A+B)(A+C).			
22. 1	For an ideal op-amp CN	MRR is zero.		
23. 1	Molecular spectra is als	so called as band spec	etra.	
24.	The electric field, polar	ization and displacen	nent vectors are related	d by D = \mathcal{E}_0 E + P.

25. In reflecting telescope the objective lens is replaced by a concave mirror.

Answer briefly:

26. W	/rite anv tw	o Maxwell	's electrom	agnetic ea	uation.
-------	--------------	-----------	-------------	------------	---------

27. What is astigmatism?

28. Give two advantages of reflecting telescopes.

29. Give the relation between Electric potential and field strength.

30. Draw the circuit of an inverting amplifier.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2011-12 & thereafter)

SUBJECT CODE: 11PH/AC/PM23

B.Sc. DEGREE EXAMINATION APRIL 2015 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : ALLIED - CORE

PAPER: PHYSICS FOR MATHEMATICS – II

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 1. With a neat diagram explain Herschel's telescope and Cassegrain's telescope.
- 2. Explain construction of AND, OR and NOT gates using diodes and transistors.
- 3. Two thin lenses of focal lengths f₁ and f₂ separated by distance d have an equivalent focal length 40 cm. The combination satisfies the conditions for no chromatic aberration and minimum spherical aberration .Find the values of f₁, f₂ and d. Assume that both lenses are of same material.
- 4. In a Newton's rings experiment the diameter of the 15th ring was found to be 0.59 cm and that of the 5th ring was 0.366 cm. If the radius of the plano convex lens is 100 cm calculate the wavelength of light used.
- 5. Light of wavelength 5000 angstrom is incident normally on a plane transmission grating. Find the difference in the angles of deviation in the first and third order spectra. The number of lines per cm on the grating surface is 6000.
- 6. Calculate the excess (equal in number) of electrons that must be placed on each of two small spheres spaced 3cm apart so that the force of repulsion between the spheres is 10-19.
- 7. The distance between the plates of a parallel plate condenser is 0.02 m. A rectangular slab of thickness 0.01 m and dielectric constant 5 is placed between them and the distance between the plates is increased in such a way that the condenser is unaltered. What is the new distance?

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 8. With neat diagram explain the theory of moving coil ballistic galvanometer.
- 9. Discuss in detail the methods of minimizing spherical aberration.
- 10. Explain plane transmission grating with a neat diagram.
- 11. Explain difference, integral and differential amplifier