STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 SIXTH SEMESTER

COURSE : MAJOR CORE
PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION - A
ANSWER ALL QUESTIONS.
($10 \times 2=20$)

1. Define vector space.
2. Define homomorphism on vector spaces.
3. Prove that $L(S)$ is a subspace of V.
4. In $F^{(3)}$, prove that the vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ are linearly independent.
5. Define an inner product space.
6. If W is the subspace of V, then define the orthogonal complement of W.
7. Define an algebra.
8. If $T \in A(V)$ and V is finite dimensional over F, then define the rank of T
9. Define similarity transformation.
10. When a matrix A is said to be orthogonally diagonalizable.

SECTION -B
ANSWER ANY FIVE QUESTIONS.
$(5 \times 8=40)$
11. If V is a vector space over F, then prove that
i) $\alpha 0=0$ for $\alpha \in F$
ii) $0 v=0$ for $v \in V$
iii) $(-\alpha) v=-(\alpha v)$ for $\alpha \in F, v \in V$
iv) if $v \neq 0$, then $\alpha v=0$ implies that $\alpha=0$.
12. i) If F is a field of real numbers, then show that the set of real-valued, continuous functions on the closed interval $[0,1]$ forms a vector space over F.
ii) Show also that those functions in part (i) for which all $\mathrm{n}^{\text {th }}$ derivatives exists for $n=1,2,3, \ldots$ form a subspace.
13. i) Define linearly independent vectors.
ii) If If $v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n} \in V$ are linearly independent, then prove that every element in their linear span has a unique representation in the form $\lambda_{1} v_{1}+\ldots \ldots \ldots \ldots .+\lambda_{n} v_{n}$ with $\lambda_{i} \in F$.
14. State and prove Schwarz inequality.
15. Let V be the set of all continuous complex valued functions on the closed Interval [0,1].If $f(t), g(t) \in V$, define $(f(t), g(t))=\int_{0}^{1} f(t) \overline{g(t)} d t$, then show that this defines an inner product on V.
16. If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible iff the constant term of the minimal polynomial for T is not zero.
17. Define matrix of a linear transformation of an n-dimensional vector space. Show that the matrix $A=\left(\begin{array}{ll}5 & -3 \\ 3 & -1\end{array}\right)$ is not diagonalizable.

SECTION -C

ANSWER ANY TWO QUESTIONS.

$(2 \times 20=40)$
18. i) If V is the internal direct sum of $U_{1}, U_{2}, \ldots \ldots \ldots \ldots, U_{n}$ then prove that V is Isomorphic to the external direct sum of $U_{1}, U_{2}, \ldots \ldots \ldots \ldots U_{n}$.
ii) If $v_{1}, \ldots \ldots \ldots v_{k}$ are in V, then prove that either they are linearly independent or some v_{k} is a linear combination of the preceding ones, $v_{1}, \ldots \ldots \ldots, v_{k-1}$.
19. i) If V is a finite dimentional inner product space, then prove that V has an orthonormal set as a basis.
ii) Let F be the real field and let V be the set of polynomials in x over F of degree 2 or less. In V, define the inner product by $(p(x), q(x))=\int_{-1}^{+1} p(x) q(x) d x$. Then construct an orthonormal set corresponding to the basis $v_{1}=1, v_{2}=x, v_{3}=x^{3}$ of V.
20. i) If V is finite dimentional over F, then prove that $T \in A(V)$ is singular iff there exists a $v \neq 0$ in V such that $v T=0$.
ii) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[X], q(\lambda)$ is a characteristic root of $q(T)$.
iii) Let A be square matrix. Then prove that A is orthogonally diagonalizable iff it is a symmetric matrix.

hacacacacac

