STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS

TIME **: 3 HOURS** MAX. MARKS: 100

SECTION - A

ANSWER ALL QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Define vector space.
- 2. Define homomorphism on vector spaces.
- 3. Prove that L(S) is a subspace of V.
- 4. In $F^{(3)}$, prove that the vectors (1,0,0), (0,1,0) and (0,0,1) are linearly independent.
- 5. Define an inner product space.
- 6. If W is the subspace of V, then define the orthogonal complement of W.
- 7. Define an algebra.
- 8. If $T \in A(V)$ and V is finite dimensional over F, then define the rank of T
- 9. Define similarity transformation.
- 10. When a matrix A is said to be orthogonally diagonalizable.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

(5x8 = 40)

- 11. If V is a vector space over F, then prove that
 - i) $\alpha 0 = 0$ for $\alpha \in F$

- ii) 0v = 0 for $v \in V$
- iii) $(-\alpha)v = -(\alpha v)$ for $\alpha \in F, v \in V$ iv) if $v \neq 0$, then $\alpha v = 0$ implies that $\alpha = 0$.
- 12. i) If F is a field of real numbers, then show that the set of real-valued, continuous functions on the closed interval [0,1] forms a vector space over F.
 - ii) Show also that those functions in part (i) for which all nth derivatives exists for n=1,2,3,... form a subspace.
- 13. i) Define linearly independent vectors.
 - ii) If $If v_1, v_2, v_3, \dots, v_n \in V$ are linearly independent, then prove that every element in their linear span has a unique representation in the form $\lambda_1 v_1 + \cdots + \lambda_n v_n$ with $\lambda_i \in F$.
- 14. State and prove Schwarz inequality.

- 15. Let V be the set of all continuous complex valued functions on the closed Interval [0,1]. If $f(t), g(t) \in V$, define $(f(t), g(t)) = \int_0^1 f(t) \overline{g(t)} dt$, then show that this defines an inner product on V.
- 16. If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible iff the constant term of the minimal polynomial for T is not zero.
- 17. Define matrix of a linear transformation of an *n*-dimensional vector space. Show that the matrix $A = \begin{pmatrix} 5 & -3 \\ 3 & -1 \end{pmatrix}$ is not diagonalizable.

SECTION -C

ANSWER ANY TWO QUESTIONS.

(2x20 = 40)

- 18. i) If V is the internal direct sum of U_1, U_2, \dots, U_n then prove that V is Isomorphic to the external direct sum of U_1, U_2, \dots, U_n .
 - ii) If v_1, \dots, v_k are in V, then prove that either they are linearly independent or some v_k is a linear combination of the preceding ones, v_1, \dots, v_{k-1} .
- 19. i) If *V* is a finite dimentional inner product space, then prove that *V* has an orthonormal set as a basis.
 - ii) Let F be the real field and let V be the set of polynomials in x over F of degree 2 or less. In V, define the inner product by $(p(x), q(x)) = \int_{-1}^{+1} p(x)q(x)dx$. Then construct an orthonormal set corresponding to the basis $v_1 = 1$, $v_2 = x$, $v_3 = x^3$ of V.
- 20. i) If V is finite dimentional over F, then prove that $T \in A(V)$ is singular iff there exists a $v \neq 0$ in V such that vT = 0.
 - ii) If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[X], q(\lambda)$ is a characteristic root of q(T).
 - iii) Let A be square matrix. Then prove that A is orthogonally diagonalizable iff it is a symmetric matrix.