STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : MAJOR CORE

PAPER : SEQUENCES AND SERIES, FOURIER SERIES

TIME : 3 HOURS MAX. MARKS: 100

SECTION - A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20)$

- 1. If $f(x) = 1 + x^3$, $1 \le x \le 3$, $g(x) = 1 + x^3$, $1 \le x \le 4$, out of f and g which one is the extension of the other? Why?
- 2. Let A be a subset of S. Define the characteristic function of A.
- 3. Find the limit of the sequence $\left\{s_n\right\}_{n=1}^{\infty}$ where $s_n = \frac{1}{n}$.
- 4. Give two examples of a bounded sequence.
- 5. Define limit superior of a sequence.
- 6. Define Cauchy sequence.
- 7. Define alternating series and give an example.
- 8. Prove that $\sum_{n=1}^{\infty} \frac{1-n}{1+2n}$ is divergent.
- 9. Define odd function and give an example.
- 10. Find the Fourier coefficient a_0 for $f(x) = x(2\pi x)$ in the interval $(0, 2\pi)$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 8 = 40)$

- 11. If $f: A \to B$ and if $X \subset A, Y \subset A$, Prove that $f(X \cup Y) = f(X) \cup f(Y)$.
- 12. Using the method of first principle find the limit of $\left\{\frac{2n}{n+4n^2}\right\}_{n=1}^{\infty}$
- 13. Prove that a non decreasing sequence which is bounded above is convergent.
- 14. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, Prove that $\lim_{n\to\infty} a_n = 0$.
- 15. Obtain the half range cosine series for $f(x) = x^2$ in $(0, \pi)$.
- 16. If the sequence $\{s_n\}_{n=1}^{\infty}$ of real numbers is convergent, Prove that $\{s_n\}_{n=1}^{\infty}$ is bounded.
- 17. Test the convergence of the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots \infty$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

 $(2 \times 20 = 40)$

- 18. a) Prove that the set of rational numbers in [0,1] is uncountable.
 - b) Prove that the sequence $\{s_n\}_{n=1}^{\infty}$ where $s_n = \frac{n^2 + 1}{2n^2 + 5}$, $\forall n \in \mathbb{N}$ converges to $\frac{1}{2}$. (10+10)
- 19. a) If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequences of real numbers, $\lim_{n\to\infty} s_n = L$, and $\lim_{n\to\infty} t_n = M$, Prove that $\lim_{n\to\infty} s_n t_n = LM$.
 - b) State and prove ratio test.

(10+10)

- 20. a) Find the half range sine series for $f(x) = \begin{cases} -x, -\pi \le x \le 0, \\ x, 0 \le x \le \pi \end{cases}$.
 - b) Determine the Fourier series expansion for $f(x) = \frac{\pi}{2} x$ in the interval $(0, 2\pi)$.

