SUBJECT CODE : 11MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE	: MAJOR CORE
PAPER	$:$
TIME	SEQUENCES AND SERIES, FOURIER SERIES
	3 HOURS

MAX. MARKS : 100
SECTION - A

ANSWER ALL THE QUESTIONS:

1. If $f(x)=1+x^{3}, 1 \leq x \leq 3, g(x)=1+x^{3}, 1 \leq x \leq 4$, out of f and g which one is the extension of the other? Why?
2. Let A be a subset of S. Define the characteristic function of A.
3. Find the limit of the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where $s_{n}=\frac{1}{n}$.
4. Give two examples of a bounded sequence.
5. Define limit superior of a sequence.
6. Define Cauchy sequence.
7. Define alternating series and give an example.
8. Prove that $\sum_{n=1}^{\infty} \frac{1-n}{1+2 n}$ is divergent.
9. Define odd function and give an example.
10. Find the Fourier coefficient a_{0} for $f(x)=x(2 \pi-x)$ in the interval $(0,2 \pi)$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

($5 \times 8=40$)
11. If $f: A \rightarrow B$ and if $X \subset A, Y \subset A$, Prove that $f(X \cup Y)=f(X) \cup f(Y)$.
12. Using the method of first principle find the limit of $\left\{\frac{2 n}{n+4 n^{\frac{1}{2}}}\right\}_{n=1}^{\infty}$
13. Prove that a non decreasing sequence which is bounded above is convergent.
14. If $\sum_{n=1}^{\infty} a_{n}$ is a convergent series, Prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
15. Obtain the half range cosine series for $f(x)=x^{2}$ in $(0, \pi)$.
16. If the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of real numbers is convergent, Prove that $\left\{s_{n}\right\}_{n=1}^{\infty}$ is bounded.
17. Test the convergence of the series $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots \infty$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

$(2 \times 20=40)$
18. a) Prove that the set of rational numbers in $[0,1]$ is uncountable.
b) Prove that the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where $s_{n}=\frac{n^{2}+1}{2 n^{2}+5}, \forall n \in N$ converges to $\frac{1}{2}$.
19. a) If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are sequences of real numbers, $\lim _{n \rightarrow \infty} s_{n}=L$, and $\lim _{n \rightarrow \infty} t_{n}=M$, Prove that $\lim _{n \rightarrow \infty} s_{n} t_{n}=L M$.
b) State and prove ratio test.
20. a) Find the half range sine series for $f(x)=\left\{\begin{array}{l}-x,-\pi \leq x \leq 0, \\ x, 0 \leq x \leq \pi\end{array}\right.$.
b) Determine the Fourier series expansion for $f(x)=\frac{\pi}{2}-x$ in the interval $(0,2 \pi)$.

