SUBJECT CODE : 11MT/MC/GC64

B. Sc. DEGREE EXAMINATION, APRIL 2015

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : GRAPH THEORY AND COMBINETORICS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:
 $10 \times 2=20$

1. Find the number of vertices and edges of $K_{m, n}$.
2. Prove that every cubic graphs has an even number of points.
3. Define centre of a tree.
4. Give a graph which is Hamiltonian but not Eulerian.
5. Write the chromatic number of K_{n}.
6. If $D=(\{1,2,3,4\},\{(1,2),(2,3),(1,3),(3,1)\})$ is a digraph, find the indegree and outdegree of each of the vertices.
7. How many minimum number of students required to ensure that a class includes at least two students whose names begin with the same letter of the English alphabet?
8. State inclusion-exclusion principle.
9. For the sequence $X=\left\{x_{1}, x_{2}, \ldots, x_{2 n}\right\}$ find the number of derangements of X such that the first n elements of each derangement are the first n elements of X.
10. Obtain the ordinary generating function of
(i) $\langle 1,-1,1,-1, \ldots\rangle$
(ii) $<0,1,2,3, \ldots\rangle$

SECTION-B

ANSWER ANY FIVE QUESTIONS:
11. When are graphs said to be isomorphic. Prove that the following graphs are not isomorphic.

12. Prove that any self complimentary graph has $4 n$ or $4 n+1$ points.
13. Show that every tree has a centre containing one point or two adjacent points..
14. State and prove Euler's theorem for planar graphs.
15. Prove that $K_{3,3}$ is not planar.
16. State and prove Sieve formula.
17. Find the sequences corresponding to the ordinary generating functions
(a) $(3+x)^{3}$
(b) $3 x^{3}+e^{2 x}$
(c) $2 x^{2}(1-x)^{-1}$

SECTION-C

ANSWER ANY TWO QUESTIONS:

18. (i) Let G be $\mathrm{a}(\mathrm{p}, \mathrm{q})$ graph. Prove that the following statements are equivalent.
(a) G is a tree
(b) Any two point of G is joined by a unique poth.
(c) G is connected and $p=q+1$
(d) G is acyclic and $p=q+1$.
(ii) State and prove five color theorem.

$$
(10+10)
$$

19. a) Define adjacency matrix of a graph. Cite an example to explain the same. Also prove that given a symmetric binary matrix A, you can construct a graph having A as its adjacency matrix.
b) Write the combinatorial proof for
(i) Pascal's identity
(ii) Newton's identity
(iii) $C(2 n, 2)=2 C(n, 2)+n^{2}$
20. (i) Find the coefficients of x^{27} in (a) $\left(x^{4}+x^{5}+x^{6}+\cdots\right)^{5}$

$$
(b)\left(x^{4}+2 x^{5}+3 x^{6}+\cdots\right)^{5}
$$

(ii) Define Fibinacci sequence and write the recurrence relation and hence show that for $n=0,1,2, \ldots . . f(n)=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right] . \quad(8+12)$

