STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12 & thereafter)

SUBJECT CODE: 11MT/MC/CA64

B. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : COMPLEX ANALYSIS

TIME : 3 HOURS MAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:

 $10 \times 2 = 20$

- 1. Find the real and imaginary parts of $f(z) = 2\overline{z}^2 + 1$.
- 2. Is $f(z) = \overline{z}$ differentiable? Justify your answer.
- 3. Find the centre and radius of the image circle of |z-3|=5 under $w=\frac{1}{z}$.
- 4. Define cross ratio of four points z_1, z_2, z_3, z_4 in the extended complex plane.
- 5. State maximum modulus theorem.
- 6. Evaluate: $\int_{C} \frac{\sin z}{z-1} dz$ where C is the positively oriented circle |z| = 2.
- 7. State Laurent's theorem.
- 8. Locate and classify the singularity of $f(z) = \frac{1}{z}$.
- 9. Find the residue of $f(z) = e^{1/z}$ at its isolated essential singularity z = 0.
- 10. State Argument theorem.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

 $5 \times 8 = 40$

- 11. Prove that an analytic function with constant modulus must reduce to a constant.
- 12. Find the bilinear transformation which maps the points $z = -1, 1, \infty$ respectively on w = -i, -1, i.
- 13. Discuss the transformation $w = e^z$.
- 14. Evaluate $\int_{C} \frac{e^{z}}{(z+2)(z+4)^{2}} dz$ where C is the positively oriented circle |z|=3.
- 15. State and prove Cauchy's integral formula.
- 16. Find the Laurent series expansion of $f(z) = \frac{-1}{(z-1)(z-2)}$ in the region 1 < |z| < 2.
- 17. Evaluate: $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$.

SECTION-C

ANSWER ANY TWO QUESTIONS:

2 X20 = 40

- 18. a) Prove that $f(z) = e^{\overline{z}}$ is nowhere differentiable.
 - b) Derive C-R equations in polar coordinates.
 - c) Find the image of the circle |z-3i|=3 under the map $w=\frac{1}{z}$. (6+10+4)
- 19. a) State and prove fundamental theorem of algebra.
 - b) State and prove Taylor's theorem.

(10+10)

- 20. a) State and prove Rouche's theorem.
 - b) Find the residue of $f(z) = \frac{z+1}{z^2 5z + 6}$ at its poles.
 - c) Using the method of contour integration evaluate $\int_{0}^{\infty} \frac{x^{2}}{(x^{2} + a^{2})(x^{2} + b^{2})} dx.$ (7 + 5 + 8)

