STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

 (For candidates admitted from the academic year 2011-12 \& thereafter)
SUBJECT CODE : 11MT/MC/AG24

B. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE	$:$ MAJOR CORE	
PAPER	$:$ ANALYTICAL GEOMETRY	
TIME	$: 3$ HOURS	MAX. MARKS : 100

SECTION A

Answer All Questions:

1. Find the centre of the conic $x^{2}-3 x y+y^{2}+10 x-10 y+21=0$.
2. If the axes are rotated through an angle θ such that $\tan \theta=2 h /(a-b)$, then write the transformed form of the general second degree equation
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$.
3. If $y=x$ and $3 y=-2 x$ are a pair of conjugate diameters of an ellipse, then find its eccentricity.
4. Show that the sum of squares of two conjugate diameters is a constant in an ellipse.
5. Write the equation $6 x-3 y+2 z-14=0$ of a plane in the normal form.
6. Find the length of perpendicular drawn from the point $(2,1,0)$ to the plane $2 x+y+2 z-17=0$.
7. Find the equation of the plane passing through the point $(3,2,-8)$ and is parallel to the plane $3 x+y+2 z-2=0$.
8. Prove that the line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-4}{-1}$ is parallel to the plane $x-2 y-4 z+7=0$.
9. Find the equation of the tangent plane at the point $(2,-2,1)$ to the sphere $x^{2}+y^{2}+z^{2}-6 x+2 z+1=0$.
10. Define right circular cone.

SECTION B

Answer Any Five Questions:

$$
5 \times 8=40
$$

11. Find the nature of the curves (i) $4 x^{2}-4 x y+4 y^{2}=100 \quad$ (ii) $x^{2}-y^{2}=100$.
12. If $C P$ and $C Q$ are two conjugate diameters of an ellipse, then show that $4\left(C P^{2}-C Q^{2}\right)=\left(S P-S^{\prime} P\right)^{2}-\left(S Q-S^{\prime} Q\right)^{2}$.
13. If a straight line cuts a hyperbola in P and Q and its asymptotes in R and S, then prove that $P R=Q S$.
14. Show that the points $(0,2,-4),(-1,1,-2),(-2,3,3)$ and $(-3,-2,1)$ are coplanar. Also find the equation of plane on which they lie.
15. If a variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at A,B,C, then show that the locus of the centroid of the triangle ABC is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$.
16. Show that the plane $2 x-y-2 z=16$ touches the sphere $x^{2}+y^{2}+z^{2}-4 x+2 y+2 z-3=0$ and also find the point of contact.
17. Find the equation of the cone with vertex at origin and base curve ,the conic in which the surface $a x^{2}+b y^{2}+c z^{2}=1$ is cut by the plane $l_{1} x+m_{1} y+n_{1} z=p$.

SECTION C

Answer Any Two Questions:

18. a) By changing the origin and the axes, show that the equation $x^{2}-5 x y+y^{2}+8 x-20 y+15=0$ is reduced to the form $7 x^{2}-3 y^{2}=2$.
b) Prove that the tangent to a rectangular hyperbola terminated by its asymptotes is bisected at the point of contact and encloses a triangle of constant area.
19. a) Find the shortest distance between the lines $\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1} ; \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2}$. Also find the equation of the line of shortest distance.
b) Find the equation of the plane passing through the line of intersection of the planes $2 x+y+3 z-4=0$ and $4 x-y+5 z-7=0$ and which is perpendicular to the plane $x+3 y-4 z+6=0$.
20. a) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0, x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.
b) Find the image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z-26=0$.
