STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/AC/MP24

B. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH III – PHYSICS SECOND SEMESTER

COURSE : ALLIED CORE

PAPER : MATHEMATICS FOR PHYSICS - II

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

(10x2=20)

- 1. Obtain the partial differential equation by eliminating arbitrary constants a and b from z = (x + a)(y + b).
- 2. Define complete integral.
- 3. Define Laplace transform of f(t).
- 4. Find $L^{-1}\left(\frac{S-1}{(S-1)^2+4}\right)$.
- 5. Find the constant term of the Fourier series for $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \sin x, & 0 < x < \pi \end{cases}$.
- 6. Check whether the function $f(x) = x \sin x$ is even or odd.
- 7. Evaluate $\lim_{z \to 2} \left(\frac{z^2 4}{z 2} \right)$.
- 8. State Cauchy's integral formula.
- 9. Write Taylor's series of f(z) about the point z_0 .
- 10. Calculate the residue of $\frac{z+1}{z^2-2z}$ at z=2.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

(5x8=40)

- 11. Solve $z^2(p^2 + q^2 + 1)$.
- 12. (a) Find $L(sin^3 2t)$.

(b) Find
$$L^{-1}\left(\frac{2s+5}{s^2+4s+13}\right)$$
.

13. Expand the function f(x) = x as a Fourier sine series in the interval $0 < x < \pi$.

- 14. Prove that an analytic function in a region with constant modulus is constant.
- 15. (a) Define singularity of a function and classify its types.
 - (b) Determine and classify the singular points of $f(z) = \frac{z \sin z}{z^3}$.
- 16. Eliminate the arbitrary functions f and g from = yf(x) + xg(x).
- 17. Evaluate $\int_C \frac{zdz}{z^2-1}$ using Cauchy's integral formula, where *C* is positively oriented circle |z|=2.

SECTION-C

ANSWER ANY TWO QUESTIONS:

(2x20=40)

- 18. (a) Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.
 - (b) Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.
- 19. (a) Solve $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$ given that $y = \frac{dy}{dx} = 1$ at x = 0 using Laplace transform.
 - (b) Find the Fourier series for $f(x) = x^2$ in the interval $-\pi \le x \le \pi$.
- 20. (a) Prove that $u = 2x x^3 + 3xy^2$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function.
 - (b) Find the residue of $\frac{e^z}{z^2(z^2+9)}$ at its poles.
