SUBJECT CODE: 11MT/PC/PD44

M. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS FOURTH SEMESTER

COURSE : CORE
PAPER : PARTIAL DIFFERENTIAL EQUATIONS
TIME : 3 HOURS

MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

1. When can you say two partial differential equations $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ are compatible?
2. Solve $\left(D^{2}-D^{\prime}\right) z=e^{2 x-y}$.
3. State Churchill's problem.
4. State Robin's boundary condition.
5. State some of the fields, where one dimensional equation is used.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

6. Solve by Charpits method: $\left(p^{2}+q^{2}\right) y=q z$.
7. Find the integral surface of the linear partial differential equation.
$x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ containing the straight line $x+y=0, z=1$.
8. Solve the equation $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y}$.
9. Reduce the partial differential equation $y^{2} \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+x^{2} \frac{\partial^{2} z}{\partial y^{2}}=\frac{y^{2}}{x} \frac{\partial z}{\partial x}+\frac{x^{2}}{y} \frac{\partial z}{\partial y}$ into canonical form.
10. Derive Poisson equation.
11. State and prove maximum -minimum principle.
12. Obtain the D'Alembert's solution of one dimensional wave equation.

> SECTION - C

ANSWER ANY THREE QUESTIONS:

13. a) Show that the equations $x p-y q=x, x^{2} p+q=x z$ are compatible and find their solution.
b) Use Jacobi's method to solve $p^{2} x+q^{2} y=z$.
14. a) Find the solution of the equation $\nabla_{1}^{2} z=e^{-x} \cos y$ which tends to zero as x tends to ∞ and has value $\cos y$ when $x=0$.
b) Solve $\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=x^{2}+x y+y^{2}$.
15. a) State and solve the interior Dirichlet problem for a circle.
b) Show that in cylindrical coordinates ($\mathrm{r}, \theta, \mathrm{z}$), Laplace equation has solution of the form $R(r) e^{ \pm m z \pm i n \theta}$, where $R(r)$ is a solution of the Bessel's equation $\frac{d^{2} R}{d r^{2}}+\frac{1}{r} \frac{d R}{d r}+\left(m^{2}-\frac{n^{2}}{r^{2}}\right) R=0$.If $\mathrm{R} \rightarrow 0$ as $z \rightarrow \infty$ and is finite when $\mathrm{r}=0$, show that in the usual notation for Bessels functions the appropriate solutions are madeup of terms of the form $J_{n}(m r) e^{-m z \pm i n \theta}$.
16. a) The ends A and B of a rod 10 cm in length are kept at temperature $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until the steady state condition prevails. Suddenly the temperature at the end A is increased to $20^{\circ} \mathrm{C}$ and the end B is decreased to $60^{\circ} \mathrm{C}$.

Find the temperature distribution in rod at time ' t '.
b) Find the solution of the one dimensional diffusion equation satisfying the boundary conditions $\begin{array}{lll}\text { i) } T \text { is bounded as } \mathrm{t} \rightarrow \infty & \text { ii) } \frac{\partial T}{\partial x} / x=0=0 \text {, for all } t\end{array}$
iii) $\frac{\partial T}{\partial x} / x=a=0$, for all t
iv) $T(x, 0)=x(a-x), 0<x<a$.
17. a) By separating the variables, show that one dimensional wave equation $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}$ has solution of the form $A \exp (\pm i n x \pm i n c t)$, where A and n are constants. Hence show that functions of the form $Z(x, t)=\sum_{r}\left(A_{r} \cos \frac{r \pi c t}{a}+B_{r} \sin \frac{r \pi c t}{a}\right) \sin \frac{r \pi x}{a}$ where $A_{r}^{\prime} S$ and $B_{r}^{\prime} S$ are constants,satisfy the wave equation and the boundary conditions $z(0, t)=0, z(a, t)=0$ for all t.
b) Consider Maxwell's equations of electromagnetic theory given by, $\nabla \cdot \vec{E}=4 \pi \rho, \nabla \cdot \vec{H}=0, \nabla \mathrm{x} \vec{E}=\frac{-1}{c} \frac{\partial \vec{H}}{\partial t}, \nabla \mathrm{x} \vec{H}=\frac{4 \pi i}{c}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}$, where \vec{E} is an electric field, ρ is electric charge density, \vec{H} is the magnetic field, i is the current density, c is the velocity of the light. Show that in the absence of charge, \vec{E} and \vec{H} satisfy the wave equation.

AAAAAAAAAAAAA

