STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted from the academic year 2011-12 \& thereafter)
SUBJECT CODE : 11MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE	$:$ CORE
PAPER	$:$ MEASURE THEORY AND INTEGRATION
TIME	$: 3$ HOURS

SECTION - A

Answer all the questions: $5 \times 2=10$

1. Show that, for any set A, the outer measure $m^{*}(A)=m^{*}(A+x)$ where $A+x=\{y+x: y \in A\}$.
2. If φ is a measurable simple function then prove that $\int a \varphi d x=a \int \varphi d x$ where $a \succcurlyeq 0$.
3. Define a ring and when is a ring to be called a σ - ring.
4. Define a positive set, negative set and null set with respect to the signed measure v.
5. If $\subseteq X \times Y$, then define x-section and y-section of E.

> SECTION - B

Answer any five questions: $5 \times 6=30$
6. Define the Lebesgue outer measure and prove: for any sequence of sets $\left\{E_{i}\right\}, m^{*}\left(\cup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} m^{*}\left(E_{i}\right)$.
7. Prove that every interval is measurable.
8. Show that, for $\alpha>1, \int_{0}^{1} \frac{x \sin x}{1+(n x)^{\alpha}} d x \rightarrow 0$ as $n \rightarrow \infty$.
9. If f is continuous on a finite interval $[a, b]$ then prove that i) f is integrable and ii) the function $F=\int_{a}^{x} f(t) d t$ is differentiable such that $F^{\prime}(x)=f(x)$.
10. Define a measure μ on \mathfrak{R}, outer measure μ^{*} on $\mathcal{K}(\Re)$ and prove that if $A, B \in \mathfrak{R}$ and $A \subseteq B$ then $\mu(A) \leq \mu(B)$.
11. Let v be a signed measure on $\llbracket X, \mathcal{J} \rrbracket$. Prove that the pair A, B is a Hahn decomposition of the set X with respect to v such that A is a positive set and B is a negative set with $X=A \cup B, A \cap B=\phi$.
12. Prove that the class of elementary sets consists of those sets which may be written as the union of finite number of disjoint measurable rectangles is an algebra.

SECTION - C

Answer any three questions:
13. a) Prove that there exist a non-measurable set.
b) Let c be any real number and let f and g be real-valued measurable functions defined on the same measurable set E then prove that $f+c, c f, f+g, f-g$ and $f g$ are also measurable.
14. a) State and prove Fatou's lemma.
b) Let f and g be non-negative measurable functions, then prove that

$$
\begin{equation*}
\int f d x+\int g d x=\int(f+g) d x \tag{12+8}
\end{equation*}
$$

15. a) Define the space $L^{p}(\mu)$ and the L^{p} norm of f. Then prove that, if a, b are constants and $f, g \in L^{p}(\mu)$ then $a f+b g \in L^{p}(\mu)$.
b) Prove that the space $L^{p}(\mu), 1 \leq p<\infty$ is complete.
16. State and prove the Radon-Nikodym theorem.
17. a) Let $\llbracket X, \mathcal{S}, \mu \rrbracket$ and $\llbracket Y, \mathcal{T}, v \rrbracket$ be σ-finite meausre spaces. For $V \in \mathcal{S} \times \mathcal{T}$ write $\phi(x)=v\left(V_{x}\right)$ and $\psi(y)=\mu\left(V^{y}\right)$ for each $x \in X, y \in Y$. Then prove that ϕ is \mathcal{S}-measurable and ψ is \mathcal{T} - measurable and

$$
\begin{equation*}
\int_{X} \varphi d \mu=\int_{Y} \psi d v . \tag{12+8}
\end{equation*}
$$

b) State and prove Fubini's theorem on product measure.

