STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/PC/MI24

M. Sc. DEGREE EXAMINATION, APRIL 2015 **BRANCH I – MATHEMATICS** SECOND SEMESTER

COURSE : CORE

: MEASURE THEORY AND INTEGRATION **PAPER**

TIME **MAX. MARKS: 100** : 3 HOURS

SECTION - A

Answer all the questions:

 $5 \times 2 = 10$

- 1. Show that, for any set A, the outer measure $m^*(A) = m^*(A + x)$ where $A + x = \{y + x : y \in A\}.$
- 2. If φ is a measurable simple function then prove that $\int a\varphi dx = a \int \varphi dx$ where $a \ge 0$.
- 3. Define a ring and when is a ring to be called a σ ring.
- 4. Define a positive set, negative set and null set with respect to the signed measure v.
- 5. If $\subseteq X \times Y$, then define x-section and y-section of E.

SECTION - B

Answer any five questions:

 $5 \times 6 = 30$

- 6. Define the Lebesgue outer measure and prove: for any sequence of sets $\{E_i\}, m^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} m^*(E_i).$ 7. Prove that every interval is measurable.
- 8. Show that, for $\alpha > 1$, $\int_0^1 \frac{x \sin x}{1 + (nx)^{\alpha}} dx \to 0$ as $n \to \infty$.
- 9. If f is continuous on a finite interval [a, b] then prove that i) f is integrable and ii) the function $F = \int_a^x f(t)dt$ is differentiable such that F'(x) = f(x).
- 10. Define a measure μ on \Re , outer measure μ^* on $\mathcal{K}(\Re)$ and prove that if $A, B \in \Re$ and $A \subseteq B$ then $\mu(A) \le \mu(B)$.
- 11. Let v be a signed measure on [X, S]. Prove that the pair A, B is a Hahn decomposition of the set X with respect to v such that A is a positive set and B is a negative set with $X = A \cup B$, $A \cap B = \phi$.
- 12. Prove that the class of elementary sets consists of those sets which may be written as the union of finite number of disjoint measurable rectangles is an algebra.

SECTION - C

Answer any three questions:

 $3 \times 20 = 60$

- 13. a) Prove that there exist a non-measurable set.
 - b) Let c be any real number and let f and g be real-valued measurable functions defined on the same measurable set E then prove that f+c,cf,f+g,f-g and fg are also measurable. (10+10)
- 14. a) State and prove Fatou's lemma.
 - b) Let f and g be non-negative measurable functions, then prove that $\int f dx + \int g dx = \int (f+g) dx. \tag{12+8}$
- 15. a) Define the space $L^p(\mu)$ and the L^p norm of f. Then prove that, if a, b are constants and $f, g \in L^p(\mu)$ then $af + bg \in L^p(\mu)$.
 - b) Prove that the space $L^p(\mu)$, $1 \le p < \infty$ is complete. (8+12)
- 16. State and prove the Radon-Nikodym theorem.
- 17. a) Let $[X, S, \mu]$ and [Y, T, v] be σ -finite measure spaces. For $V \in S \times T$ write $\phi(x) = v(V_x)$ and $\psi(y) = \mu(V^y)$ for each $x \in X, y \in Y$. Then prove that ϕ is S- measurable and ψ is T- measurable and

$$\int_X \varphi d\mu = \int_Y \psi d\nu.$$

b) State and prove Fubini's theorem on product measure. (12+8)

