STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
 (For candidates admitted from the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/PC/LA24

M. Sc. DEGREE EXAMINATION, APRIL 2015
 BRANCH I - MATHEMATICS
 SECOND SEMESTER

COURSE : CORE
 PAPER : LINEAR ALGEBRA
 TIME : 3 HOURS

MAX. MARKS : 100

Section-A

Answer ALL the questions

1. Show that similar matrices have the same characteristic polynomial.
2. When do you say that an R-Module M is finitely generated?
3. When a subspace M of V invariant under T becomes cyclic with respect to the nilpotent linear transformation T.
4. Write down the companion matrix of the polynomial $x^{4}-3 x^{3}+10 x^{2}-5 x+8$.
5. State Principal Axis theorem.

Section-B

Answer any FIVE questions

6. Let V be a finite-dimensional vector space over the field F and if T is a linear operator on V, then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
7. If A and B are submodules of M then prove that
(i) $A \cap B$ is a submodule of M.
(ii) $A+B=\{a+b / a \in A, b \in B\}$ is a submodule of M.
8. Prove that there exists a subspace W of V, invariant under T, such that $V=V_{1} \oplus W$, where T is a nilpotent linear transformation.
9. Find all possible Jordan canonical forms for a linear operator $T: V \rightarrow V$ where minimal polynomial is $x^{2}(x-1)^{2}(x+1)^{3}$.
10. If T in $A_{F}(V)$ has as minimal polynomial $p(x)=\gamma_{0}+\gamma_{1} x+\cdots \gamma_{r-1} x^{r-1}+x^{r}$ and if V as a module is cyclic, then show that there exists a basis of V in which the matrix of T is $C(p(x))$, the companion matrix of $p(x)$.
11. Let V be a finite-dimensional inner product space and if $\mathcal{B}=\left\{\alpha_{1} \ldots \alpha_{n}\right\}$ is an orthonormal basis for V and if T is a linear operator on V then prove that $A_{k j}=\left(T_{\alpha_{j}} / \alpha_{k}\right)$.
12. Prove that on a finite-dimensional inner product space of positive dimension, every selfadjoint operator has a (non-zero) characteristic vector.

Section-C
 Answer any THREE questions

($3 \times 20=60$)
13. State and prove Cayley-Hamilton theorem.
14. Prove that any finitely generated R-module M is the direct sum of a finite number of cyclic submodules where R is a Euclidean ring.
15. (a) Prove that the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right]$ is nilpotent.Also find its invariants and Jordan form.
(b) Prove that the matrix $B=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0\end{array}\right]$ is not similar to $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right]$
16. Prove that the elements S and T in $A_{F}(V)$ are similar in $A_{F}(V)$ if and only if they have the same elementary divisors.
17. (a) Let U be a linear operator on an inner product space V then prove that U is unitary if and only if the adjoint U^{*} of U exists and $U U^{*}=U^{*} U=I$.
(b) Let V be a finite dimensional inner product space. If f a form on V and T is a linear operator on V then prove that the map f on T is an isomorphism of the space of forms onto $L(V, V)$.

