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SECTION—A   (5x2=10) 

ANSWER ALL THE QUESTIONS 

 

1. State open mapping theorem. 

2. Let 1 2{ , ,..., }
n

e e e be a finite orthonormal set in a Hilbert space �. If � is any vector in � 

then prove that ( )
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3. Prove that the adjoint  operationT T on
∗

→ ���� has the property  T T
∗

= . 

4. Define determinant and spectrum of an operator � on a Hilbert space. 

5. Define Banach Algebra. 

 

                                                    SECTION—B   (5x6=30) 

                                        ANSWER ANY FIVE QUESTIONS 

 
6. State and prove the closed graph theorem. 

7. State and prove Schwarz inequality. 

8. If � and � are closed linear subspaces of a Hilbert space � such that M N⊥  then prove 

that the linear subspace � 	 � is closed. 

9. If � is an operator on � for which ���, ��  �  0 foe all x then prove that � �  0. 

10. If � is an operator on � then prove that � is normal if and only if its real and imaginary 

parts commute. 

11. Let � be a basis for � and � an operator whose matrix relative to � is 
ij

α   . Prove that � 

is nonsingular if and only if 
ij

α    is nonsingular. 

12.  If the regular elements of a Banach Algebra � are denoted by �. Prove that the mapping 

1
x x

−
→ of � into � is continuous and is  a homeomorphism of � onto itself. 
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SECTION—C  (3x20=60) 

ANSWER ANY THREE QUESTIONS 
 

13. State and prove Hahn- Banach theorem. 

 

14. (i)  Let � be a Hilbert space and let ���� be an orthonormal set in �. Prove that the   

      following conditions are all equivalent to one another   

     (1) ���� is complete       

     (2) { }
i

x e⊥ ⇒� �  0    

     (3)  if � is an arbitrary vector in � then ( ),
i i

x x e e=∑   

     (4)  if � is an arbitrary vector in � then ( )
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,
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x x e=∑ .
 

(ii)  If � is a closed linear subspace of a Hilbert space �, then prove that � � M M
⊥

⊕ . 

 

15. (i)  If � is an operator on � then prove that the following conditions are all equivalent to   

      one another  (i) ��� �  �    (ii)  ��� , �� � �  � �, ��� �, �    (iii) ||��||  �  ||�|| � �.  

(ii)  If � is the projection on a closed linear subspace � of �, then prove that � reduces  

      an operator � if and only if  �� �  ��. 

 

16. State and prove the spectral theorem. 

 

17. (i) If the regular elements of a Banach Algebra � are denoted by �. Prove that � is an  

     open set. 

 (ii) Prove that the boundary of the set of all singular elements � is a subset of the set of  

     all topological divisors of zero �. 
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