STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/PC/DG44

M. Sc. DEGREE EXAMINATION, APRIL 2015 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE : CORE

PAPER : DIFFERENTIAL GEOMETRY

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS:

 $(5 \times 2 = 10)$

- 1. What is the arc-length of the twisted cubic curve $\Gamma(t) = (t, t^2, t^3)$ starting at $\Gamma(0)$?
- 2. Define the surface double cone in \mathbb{R}^3 .
- 3. Compute the first fundamental form of the sphere

$$s(\theta, \phi) = (\cos\theta \cos\phi, \cos\theta \sin\phi, \sin\theta)$$

- 4. What is an umbilic?
- 5. Define mean curvature of a surface.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 6 = 30)$

- 6. Define reparametrisation. Prove that any reparametrisation of a regular curve is regular.
- 7. Define torsion of a space curve. Compute the torsion of the circular helix $\Gamma(\theta) = (a \cos \theta, a \sin \theta, b \theta)$.
- 8. Define tangent space at a point of a surface. If σ is a patch of a surface S containing a point P, (u, v) being coordinates then prove that the tangent space at P is the vector subspace spanned by the vectors $\sigma_{\mathbf{u}}$ and $\sigma_{\mathbf{v}}$
- 9. Calculate the first fundamental form of the surface $\sigma(u,v)=(u-v,u+v,u^2+v^2)$
- 10. If κ_1 and κ_2 are principal curvatures at a point P of a surface patch, prove that κ_1 and κ_2 are real numbers.
- 11. State and prove Euler's theorem.
- 12. Prove that the area of a regular surface patch is unchanged by reparametrisation.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 20 = 60)$

- 13. State and prove Serret-Frenet formulae.
- 14. Prove that the unit sphere and double cone are surfaces.
- 15. When are two surfaces said to be isometric? Prove that two surfaces S_1 and S_2 are isometric if and only if, for any surface patches σ_1 and f σ_1 of S_1 and S_2 , respectively, have the same first fundamental form.
- 16. Derive the expression of second fundamental form for a surface. Compute the same for the surface of revolution $\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$.
- 17. State and prove Gauss's remarkable theorem.

