STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI –600 086 (For candidates admitted from the academic year 2011 – 12 & thereafter)

SUBJECT CODE: 11BI/PC/BI24

M. Sc. DEGREE EXAMINATION, APRIL 2015 BIOINFORMATICS SECOND SEMESTER

								12 0.											
COURSE PAPER TIME	:		BA				FOR	MAT CTI(- A			Μ	AX	. M	AR	RKS:	: 1	.00
ANSWER A	ALL T	ΓH	E QI	JES'	ΓΙΟΙ	NS											(30)	x1=	30)
1. UPGMA	stands	s fo	or													_•			
 UPGMA Multiple A statisti 	sequer	nce	e alig	nme	nt too	ols a	re				and						_•		
3. A statisti	ical tec	chn	nique	that	tests	the	samj	pling	error	rs of	a ph	ylog	gene	etic 1	ree	is l	knov	vn	as
4. The study	y of ev	volu	ution	of a	gene	etica	lly re	elated	grou	ip o	f org	anis	ms i	s kr	low	n a	s		
 A tree is a The present 	compo		$\frac{1}{2}$ of $\frac{1}{2}$		in di	ffor	ontor	8	$\frac{1}{2}$		<u>m 00</u>						 •		
 The present Margaret I 	Davho	sai off d	deve	loneo	iii ui 1 the	firs	t nrot	ein se	8 18 K 2011ei	nce	/II as datab	ase	call	ed					•
				loper	* 1110	1115	i prot	em s	eque		uutut	Juse	cun	cu					
· · · · · · · · · · · · · · · · · · ·	VISS I	PR	OT																
b) PI																			
,	las of	-		-			d stru	cture											
,	otein s	-				ık													
8. Literature	datab	ase	es inc	lude															
a) M	EDLI	NE	and	Publ	MED)													
b) M	EDLI	NE	and	PDE	3														
c) Pu	ıbMEI	D a	nd P	DB															
d) M	EDLI	NE	and	PDS															
9. Which of	the fol	llo	wing	is a	prote	ein s	eque	nce d	ataba	ase?									
a) D	DBJ																		
b) EN	MBL																		
c) Ge	enBanl	k																	
d) PI	R																		
10. GenBan	k, the	nu	cleic	acid	sequ	ienc	e dat	abase	e is n	nain	taine	d by	7						
a) Br	ookha	ave	n lab	orato	ory														
b) D	NA da	atal	base	of Ja	pan	(DD)BJ)												
c) Eu	iropea	n N	Mole	cular	Biol	logy	labo	rator	y (EN	MBI	_)								
	ational											BI)							

- 11. Submission to GenBanK are made using
 - a) BankIt and Sequin
 - b) BankIt and BankIn
 - c) Sequin and BankIn
 - d)Entrez

12. The information retrieval tool of NCBI GenBank is

- a) Entrez
- b) STAG
- c) SeqIn
- d) text search
- 13. Which of the following is a sequence alignment tool
 - a) BLAST
 - b) PRINT
 - c) PROSITE
 - d) PIR
- 14. When performing a database search, what is the definition of an E-value?
 - a) The chance that a random sequence could achieve a better score than the query.
 - b) The chance that a homologous sequence could achieve a similar score to the query.
 - c) The chance that a random sequence could achieve a worse score than the query.
- d) The chance that a homologous sequence could achieve a better score than the query.
- 15. Well-conserved regions in multiple sequence alignments:
 - a) Reflect areas of structural importance.
 - b) Reflect areas of functional importance.
 - c) Reflect areas of both functional and structural importance.
 - d) Reflect areas likely to be of functional and/or structural importance.
- 16. Why are colour schemes important in creating and analysing sequence alignments?
 - a) They look pretty
 - b) To make clearer printouts and presentations
 - c) To allow you to distinguish conserved residues and residue groups more easily
 - d) To allow you to detect active sites of proteins
- 17. Is consensus important in secondary structure prediction?
 - a) Yes, because consensus improves one's confidence in the results
 - b) No, because some algorithms predict better than others
 - c) No, because these algorithms are all built from the same datasets and thus make the same errors
 - d) Yes, because if one obtains a consensus then the results are correct
- 18. Bootstrapping repeats the phylogenetic analysis several times, each time reshuffling the columns of the initial alignment, in order to:
 - a) Build a concensus tree, where the number of times each branch reforms is counted and used to estimate its probability
 - b) Generate a random model from which to benchmark phylogenetic data
 - c) Produce a graphical representation of the tree
 - d) Assess the probability that the sequences in the alignment are unrelated

19 SRS is:

- a) Website for sequence similarity searches
- b) Website specialising in mapping mutations related to human disease
- c) Website that indexes many biological databases and is searchable by keywords
- d) Website for protein family database searches

20. A Single Piece of Information in a database is called

- a) File
- b) Field
- c) Record
- d) Data set
- 21. Which of the following is a nucleotide sequence database?
 - a) EMBL
 - b) SwissProt
 - c) TrEMBL
 - d) PROSITE
- 22. BLOSUM matrices are used for
 - a) Multiple sequence Alignment
 - b) Pairwise sequence Alignment
 - c) Phylogenetic Analysis
 - d) All the above
- 23. Clustal W
 - a) Multiple sequence alignment tool
 - b) Protein secondary structure predicting tool
 - c) Data retrieving tool
 - d) Nucleic acid sequence analysis tool
- 24. Phylogenetic relationship can be shown by
 - a.)Dendrogram
 - b) Gene Bank
 - c) Data retrieving tool
 - d) Data search tool
- 25. PRINTS are software used for
 - a) detection of genes from genome sequence
 - b) detection of tRNA genes
 - c) prediction of function of a new gene
 - d) Identification of functional domains/motifs of proteins
- 26. Rooted tree
- 27. BLAST
- 28. FASTA
- 29. Local alignment
- 30. NCBI

SECTION - B

Answer any THREE of the following; each answers not exceeding 500 words. Draw diagram wherever necessary. (3 X 10 = 30)

- 31. What is sequence retrieval system?
- 32. Explain pairwise alignment in detail?
- 33. Detail on advanced BLAST search.
- 34. Explain Integrated MSA Resources.
- 35. Give a detailed account on evolutionary analysis.

SECTION – C

Answer any TWO of the following, each answer not exceeding 1200 words. Draw diagramwherever necessary. $(2 \times 20 = 40)$

- 36. Discuss on the different types of biological databases.
- 37. Explain Needleman-Wunsch algorithm & Smith-Waterman algorithm.
- 38. Explain BLAST algorithm. Discuss the relationship between E & P values and the evaluation of output of BLAST.
- 39. Explain the different methods of tree construction.
