STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086
(For candidates admitted from the academic year 2004-05 \& thereafter)
SUBJECT CODE: MT/PC/FA44

M. Sc. DEGREE EXAMINATION, APRIL 2009
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE	: MAJOR CORE
PAPER	$:$ FUNCTIONAL ANALYSIS
TIME	$: 3$ HOURS

SECTION - A

ANSWER ANY FIVE QUESTIONS:

$(5 \times 8=40)$

1. State and prove Holder's and Minkowski's inequalities.
2. Define natural imbedding of N in $N^{* *}$ and bring out its properties.
3. State and prove closed Graph theorem.
4. Show that a closed convex set in a Hilbert Space contains a unique vector of smallest norm.
5. If H is a Hilbert Space and f is an arbitrary functional in N^{*}, show that there exists a unique vector y in H such that $f(x)=(x, y)$ for every x in H.
6. IF P is a projection in H with range M and null space N prove that $M \perp N$ if and only if P is self adjoint and in this case $N=M^{\perp}$.
7. Prove that an operator T on a Hilbert Space H is unitary if and only if it is an isometric isomorphism of H onto itself.

SECTION - B

ANSWER ANY THREE QUESTIONS:

$(3 \times 20=60)$
8. a) Let T be a linear transformation from a normed linear space N into a normed linear space N^{\prime}. Prove that the following conditions are equivalent.
(i) T is continuous.
(ii) T is continuous at the origin
(iii) There exists a real number $K>0$ with the property that $\|T(x)\| \leq K .\|x\|$ for every $x \in N$.
(iv) If S is the closed unit sphere in N then $T(S)$ is a bounded set in N^{\prime}.
b) Define $\beta\left(N, N^{\prime}\right)$ and prove that it is a Banach Space if N^{\prime} is a Banach Space.
9. State and prove the Hahn-Banach theorem.
10. a) State and prove the uniform boundedness theorem.
b) State and prove Bessel's inequality.
11. a) Let $\left\{e_{i}\right\}$ be an orthonormal set in a Hilbert Space H. Prove that the following statements are equivalent to one another.
(i) $\left\{e_{i}\right\}$ is complete
(ii) $x \perp\left\{e_{i}\right\} \Rightarrow x=0$
(iii) If x is an arbitrary vector in H, prove that $x=\sum\left(x, e_{i}\right) e_{i}$
(iv) If x is an arbitrary vector in H, prove that $\|x\|^{2}=\sum\left|\left(x, e_{i}\right)\right|^{2}$.
b) Define adjoint of an operator on a Hilbert Space and prove that the adjoint operation has the following properties.
(i) $\left(T_{1} T_{2}\right) *=T_{2} * T_{1} *$
(ii) $T^{* *}=T$
(iii) $\|T *\|=\|T\|$
12. State and prove the Spectral theorem.

