STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2004–05 & thereafter)

SUBJECT CODE: MT/PC/FA44

M. Sc. DEGREE EXAMINATION, APRIL 2009 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	FUNCTIONAL ANALYSIS
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ANY FIVE QUESTIONS:

(5 X 8 = 40)

 $(3 \times 20 = 60)$

- 1. State and prove Holder's and Minkowski's inequalities.
- 2. Define natural imbedding of N in N^{**} and bring out its properties.
- 3. State and prove closed Graph theorem.
- 4. Show that a closed convex set in a Hilbert Space contains a unique vector of smallest norm.
- 5. If *H* is a Hilbert Space and *f* is an arbitrary functional in N^* , show that there exists a unique vector *y* in *H* such that f(x) = (x, y) for every *x* in *H*.
- 6. IF *P* is a projection in *H* with range *M* and null space *N* prove that $M \perp N$ if and only if *P* is self adjoint and in this case $N = M^{\perp}$.
- 7. Prove that an operator T on a Hilbert Space H is unitary if and only if it is an isometric isomorphism of H onto itself.

SECTION – B

ANSWER ANY THREE QUESTIONS:

- 8. a) Let T be a linear transformation from a normed linear space N into a normed linear space N'. Prove that the following conditions are equivalent.
 - (i) *T* is continuous.
 - (ii) T is continuous at the origin
 - (iii) There exists a real number K > 0 with the property that $||T(x)|| \le K \cdot ||x||$ for every $x \in N$.
 - (iv) If S is the closed unit sphere in N then T(S) is a bounded set in N'.
 - b) Define $\beta(N,N')$ and prove that it is a Banach Space if N' is a Banach Space.
- 9. State and prove the Hahn-Banach theorem.
- 10. a) State and prove the uniform boundedness theorem.
 - b) State and prove Bessel's inequality.

- 11. a) Let $\{e_i\}$ be an orthonormal set in a Hilbert Space H. Prove that the following statements are equivalent to one another.
 - (i) $\{e_i\}$ is complete
 - (ii) $x \perp \{e_i\} \Rightarrow x = 0$
 - (iii) If x is an arbitrary vector in H , prove that $x = \sum (x, e_i)e_i$
 - (iv) If x is an arbitrary vector in H , prove that $||x||^2 = \sum |(x,e_i)|^2$.
 - b) Define adjoint of an operator on a Hilbert Space and prove that the adjoint operation has the following properties.
 - (i) $(T_1T_2)^* = T_2^*T_1^*$
 - (ii) $T^{**} = T$
 - (iii) $||T^*|| = ||T||$
- 12. State and prove the Spectral theorem.

.....