STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE : PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2007 BRANCH III - PHYSICS THIRD SEMESTER

		REG. No
:	MAJOR – CORE	
:	MATHEMATICAL PHYSICS	
:	30 MINS.	MAX. MARKS : 30
	: : :	: MATHEMATICAL PHYSICS

SECTION – A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:

 $(30 \times 1 = 30)$

- I CHOOSE THE CORRECT ANSWER:
- 1. $\vec{A} \times (\vec{B} \times \vec{C}) + \vec{B} \times (\vec{C} \times \vec{A}) + \vec{C} \times (\vec{A} \times \vec{B})$ is equal to a) zero b) $(\vec{A} \cdot \vec{B} \times \vec{C})$ c) $\vec{B} (\vec{A} \cdot \vec{C})$ d) $\vec{A} (\vec{B} \cdot \vec{C})$
- 2. The value of the integral $\iint_{s} (\vec{r} \cdot \vec{n}) ds$ is given by [S is a closed surface enclosing a volume V] a) S b) 2S c) V d) 3V
- 3. If $\vec{A} = (\vec{2}\vec{i} \vec{j})$ and $\vec{B} = \vec{3}\vec{i} + \vec{K}$, then $\vec{A} \cdot \vec{B}$ is a) $-8\vec{i}$ b) $10\vec{j}$ c) 6 d) - 10
- 4. A particle moves so that its position vector \vec{r} is given by $\vec{r} = i \cos \omega t + j \sin \omega t$ where ω is a constant. If \vec{v} is the velocity of the particle, then $\vec{r}.\vec{v}$ is equal to a) ω b) 0 c) r d) v
- 5. If $\vec{A} = xz\hat{i} y^2\hat{j} + 2x^2y\hat{k}$, then $\nabla \cdot \vec{A}$ is a) x - y b) 2x - y c) x - 2y d) 2x - z
- 6. The angle which the vector $\vec{A} = 3\vec{j} 6\vec{j} + 2\vec{k}$ makes with the +ve x axis is a) 64.6° b) 149° c) 73.4° d) 120°

7.
$$\begin{array}{c} Lt \\ z \to 0 \\ a \end{array} \begin{pmatrix} 1 - CosZ \\ z^2 \end{pmatrix} \text{ is given by} \\ b 5/3 \\ c) 1/3 \\ d) 1/7 \end{array}$$

PH/MC/MP34

 $\frac{d}{d2}(\bar{z})$ is 8. c) $\frac{z}{z}$ d) Does not Exist b) $z\bar{z}$ a) z The particular solution of the equation $(D^2 - 3D + 2) y = e^x$ is a) xe^x b) - xe^{-x} c) - xe^x 9. d) xe^{-x} $y = c_1 e^{-x} + c_2 e^{2x}$ is the primitive of the equation 10. b) $(D^2 - D + 2)y = 0$ d) $(D^2 + D - 2)y = 0$ a) $(D^2 + D + 2)y = 0$ c) $(D^2 - D - 2)v = 0$ 11. If an electrical circuit contains a resistance (R), condenser of capacity 'C' is series and an emf E; the charge 'q' on the condenser is given by a) $\frac{dq}{dt} + \frac{q}{c} = \frac{E}{R}$ b) $R\frac{dq}{dt} + \frac{q}{c} = E$ c) $R\frac{dq}{dt} + qC = E$ d) $\frac{dq}{dt} + \frac{R}{ac} = E$ 12. The diffrential equation representing vertical oscillations of a loaded spring is given by $\left(\frac{d^2x}{dt^2}\right) + 96x = 0$. Its period of oscillation is a) 0.64 sec c) 0.05sec d) 4 sec b) 1.2 sec 13. The value of Pn(1) is b) - 1 a) 1 c) 0 d) n The value of $\frac{3}{2}$ is 14. c) 0.886 a) 1.45 b) 3.14 d) 1.571 The value of the integral $\int^{+1} P_0(x) dx$ is 15. b) 2 c) - 1 d) -2 a) 1 Π FILL IN THE BLANKS: Given $A = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{B} = 3\vec{i} + 2\vec{j} + \vec{k}$, the unit vector perpendicular to both 16. \vec{A} and \vec{B} is _____. A force $\vec{F} = (5\vec{i} + 2\vec{j})$ acts at the point (2,1). The moment of this force about the origin is 17. origin is 18. The function which is a solution of Laplace equation is called ______. 19. The general solution of the equation y'' + 9y = 0 is _____. 20. The relation between Gamma and Beta functions is given by _ ..3

/ 2 /

III STATE WHETHER TRUE OR FALSE:

- 21. The value of $\nabla \times \vec{r}$ is zero.
- 22. The work done in moving an object along a vector $\vec{r} = 3\vec{i} + 2\vec{j} 5\vec{k}$ by the force $\vec{F} = 2\vec{i} \vec{j} \vec{k}$ is 6 Joules.
- 23. An example of Exact Differential equation is $(4x^3 + 6xy + y^2)(\frac{dx}{dy}) = -[3x^2 + 2xy + 2].$
- 24. $\Phi = \begin{pmatrix} 1/r \end{pmatrix}$ is a solution of Laplace equation.
- 25. Gamma function is generally represented by an Improper integral.
- IV ANSWER THE FOLLOWING:
- 26. State Green's theorem in the plane.
- 27. Prove that the area of a parallelogram with sides \vec{A} and \vec{B} is $|\vec{A} \times \vec{B}|$.
- 28. State L' Hospital's rule.
- 29. Prove that $\sqrt{\frac{1}{2}} = \sqrt{\Pi}$.
- 30. Show that $\beta(m,n) = \beta(n,m)$.

7° 7° 7° 7° 7° 7°

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086. (For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE : PH/MC/MP34

B.Sc. DEGREE EXAMINATION NOVEMBER 2007 BRANCH III - PHYSICS THIRD SEMESTER

COURSE	:	MAJOR – CORE	
PAPER	:	MATHEMATICAL PHYSICS	
TIME	:	2 ½ HOURS	MAX. MARKS : 70

SECTION – B

ANSWER ANY FIVE QUESTIONS:

 $(5 \times 5 = 25)$

- 1. Show that $\vec{A} = (2xy + z^3)\vec{i} + x^2\vec{j} + 3xz^2\vec{k}$ is a conservative force field. Find the scalar potential.
- 2. Find the work done in moving a particle once around a circle 'C' in the X Y plane, if the circle has centre at the origin and radius 3 units and if the force field is given by $\vec{F} = (2x y + z)\vec{i} + (x + y z^2)\vec{j} + (3x 2y + 4z)\vec{k}$.

3. If
$$\vec{v} = \vec{w} \times \vec{r}$$
, prove that $\vec{\omega} = \frac{1}{2} curl \vec{v}$ where $\vec{\omega}$ is a constant vector.

- 4. Derive Cauchy's integral formula.
- 5. Find the particular solution of the differential equation $(x + xy^2)dx + (y + x^2y)dy = 0$, given that y = 2 when x = 1.
- 6. If the population of a country doubles in 50 years, in how many years will it treble, under the assumption that the rate of increase is directly proportional to the Number of inhabitants?
- 7. Plot the graph of Gamma function n $[0 \le n < 4]$.

SECTION – C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

8. If $\phi(x, y, z) = x^2 yz$ and $\vec{A} = 3x^2 y\dot{i} + yz^2 \vec{j} - xz\vec{k}$, find $\left(\frac{\partial^2}{\partial y \partial z}\right) (\phi \vec{A})$ at the point (1, -2, -1).

- 9. a) State and prove stokes' fheorem.
 - b) A particle moves along a curve whose parametric equations are $x = 3e^{-2t}$, y = 4 Sin 3t, z = 5 Cos 3t where 't' is the time. Find the magnitudes of the velocity and acceleration at t = 0.

10. a) Solve
$$\frac{d^2 y}{dx^2} + 10\frac{dy}{dx} + 25y = 20Cos2x$$
.

- b) A body of mass 4 kgms falls from rest (at t = 0) in a medium for which the resistance (in kg) is numerically equal to square of the velocity v^2 . Find (i) the velocity and distance travelled at any time t > 0 and (ii) the limiting velocity.
- 11. a) Deduce Rodrigues' formula for Pn(x).
 - b) Give the graphical representation for $P_1(x)$ and $P_2(x)$.

1

12. a) Show that
$$\beta(m,n) = \int_0^\infty \frac{ym^{-1}}{(1+y)^{m+n}} dy$$
.

b) Evaluate using Gamma Beta function: $\int_{0}^{\infty} e^{-x^{2}} dx$.

