STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)
SUBJECT CODE : PH/MC/ER54

B.Sc. DEGREE EXAMINATION NOVEMBER 2007
 BRANCH III - PHYSICS
 FIFTH SEMESTER

REG. No. \qquad
COURSE : MAJOR - CORE
PAPER : ELECTRO DYNAMICS \& RELATIVITY
TIME
30 MINS.
MAX. MARKS : $\mathbf{3 0}$

SECTION - A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

ANSWER ALL QUESTIONS:
$(30 \times 1=30)$

I CHOOSE THE CORRECT ANSWER:

1. Unit of induced emf
a) weber $/ \mathrm{sec}^{2}$
b) weber/sec
c) Newton-mt/sec
2. Value of the coupling constant K is
a) $|k|>1$
b) $|k| \leq 0$
c) $|k| \leq 1$
3. In free space
a) $\nabla \cdot D=\rho$
b) $\nabla \cdot E=0$
c) $\nabla \cdot D=-\frac{\partial B}{\partial t}$
4. Wave equation in one dimension is
a) $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\mu}{T} \frac{\partial^{2} f}{\partial t^{2}}$
b) $\frac{\partial^{2} f}{\partial x^{2}}=-\frac{\mu}{T} \frac{\partial^{2} f}{\partial t^{2}}$
c) $\frac{\partial^{2} f}{\partial x^{2}}=-\frac{\mu}{T^{2}} \frac{\partial^{2} f}{\partial t^{2}}$
5. The relation between velocity v of the em wave and μ the refractive index of the dielectric is
a) $v=\frac{c}{\eta}$
b) $v=\frac{c^{2}}{\eta}$
c) $v^{2}=\frac{c}{\eta^{2}}$
6. The direction of the induced emf is given by
a) Faraday's law
b) Laplace law
c) Lenz's law
7. Which of the following is correct
a) $\ell=\ell o \sqrt{\frac{1-c^{2}}{v^{2}}}$
b) $\ell=\ell o \sqrt{\frac{1-v^{2}}{c^{2}}}$
c) $\ell_{o}=\ell \sqrt{\frac{1-v^{2}}{c^{2}}}$
8. Galiban Transformation equation, when the frame moves along positive X direction
a) $x^{1}=x-v t$
b) $x=x^{1}-v t$
c) $x=v t-x^{1}$
9. Which of the following is correct
a) $m=m o\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}$
b) $m=m o\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}$
c) $m=m_{o}\left(1-\frac{v^{2}}{c^{2}}\right)$
10. Space-time diagram has
a) 4 real axes
b) 3 real and imaginary axes
c) 2 real of 2 imaginary axes
11. If a rod moves along the x-direction length contraction is observed along
a) x-axis
b) y-axis
c) z -axis
12. Dimensions perpendiculars to velocity are
a) contracted
b) expanded
c) not contracted
13. Zeroth component of Energy-momentum 4 vector is
a) $P^{o}=\frac{E}{C}$
b) $P^{o}=E C$
c) $P^{o}=E C^{2}$
14. If a charge q moves with a velocity u in the frame S with electric field E, then the magnetic field is
a) $B=\frac{\bar{U} \cdot \bar{E}}{C^{2}}$
b) $B=\frac{\overline{U \times} \cdot \bar{E}}{C^{2}}$
c) $\frac{U \times E}{C}$
15. Expression for the transverse Doppler effect is
a) $\nu^{1}=v \sqrt{1-\beta^{2}}$
b) $v=v^{1} \sqrt{1-\beta^{2}}$
c) $v=v^{1} \sqrt{1+\beta^{2}}$

II FILL IN THE BLANKS:

16. The direction of the induced emf is such that it always \qquad the change \qquad for its production.
17. For plane waves fields are \qquad over every plane \qquad to the direction of propagation.
18. $\overline{\text { first law holds good. }}$
19. Doppler effect confirms relativistic \qquad .
20. The projectory of a charged particle in a uniform magnetic field is \qquad motion.
21. Eddy currents do not produce loss of energy.
22. EM field carry both energy and momentum.
23. Sum of reflection co-efficient and transmission co-efficient is always less than 1 .
24. The two mirrors in Michelson Morley experimental setup one highly silvered on their front faces to get multiple internal reflections.
25. The world line of a light wave for which $\mathrm{U}=\mathrm{C}$ is a straight line making a 45° angle with axes.

IV ANSWER THE FOLLOWING:
26. Define Henry.
27. What is meant by invariant interval.
28. Write down Einstein Relation between momentum and energy.
29. State the principle of equivalence.
30. What is meant by monochromatic wave.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)

SUBJECT CODE : PH/MC/ER54

B.Sc. DEGREE EXAMINATION NOVEMBER 2007
 BRANCH III - PHYSICS FIFTH SEMESTER

COURSE : MAJOR - CORE PAPER : ELECTRO DYNAMICS \& RELATIVITY
TIME : $2 ½$ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS:
$(5 \times 5=25)$

1. Calculate the co-efficient of self inductance of a case of 1000 turns when a current of 2.5 amp produces a magnetic flux of 0.5 micro weber.
2. Obtain the wave equation in one dimension.
3. Calculate the energy density of the em field.
4. Calculate the rest energy of an electron in joules and electron volts.
5. Calculate the electric field of a uniformly moving point charge.
6. Obtain the mass energy equivalence.
7. Calculate the speed of the electron which has kinetic energy 1.02 MeV . Given mass of the electron is 0.51 MeV .

SECTION - C

ANSWER ANY THREE QUESTIONS:
8. Derive Maxwells equations.
9. Calculate the Reflection and transmission co-efficient when em wave is incident normally.
10. a) Obtain Lorentz transformation equations.
b) A rod has of length 1 mt when the rod is in a satellite moving with the velocity 0.8 C relative to laboratory. What is the length of the rod as determined by an observer i) in the satellite ii) in the laboratory.
11. a) Derive the relativistic formula for variation of mass with velocity.
b) Calculate the kE of an e^{-}moving with a velocity of 0.98 times the velocity of light in the lab system.
12. Discuss about longitudinal and transverse Doppler effect. Show term relativistic theory there is no classical transverse effect.

