STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/ER54

B.Sc. DEGREE EXAMINATION NOVEMBER 2007

BRANCH III - PHYSICS FIFTH SEMESTER

REG. No.	
ILLU, INU.	

MAJOR - CORE COURSE

PAPER **ELECTRO DYNAMICS & RELATIVITY**

TIME 30 MINS. MAX. MARKS: 30

SECTION - A

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

 $(30 \times 1 = 30)$ ANSWER ALL QUESTIONS:

- Ι CHOOSE THE CORRECT ANSWER:
- 1. Unit of induced emf
 - a) weber/sec²
- b) weber/sec
- c) Newton-mt/sec

- 2. Value of the coupling constant K is
 - a) |k| > 1

b) $|k| \le 0$

c) $|k| \leq 1$

- 3. In free space
 - a) $\nabla \cdot D = \rho$
- b) $\nabla \cdot E = 0$
- c) $\nabla \cdot D = -\frac{\partial B}{\partial t}$

- Wave equation in one dimension is 4.
- a) $\frac{\partial^2 f}{\partial x^2} = \frac{\mu}{T} \frac{\partial^2 f}{\partial t^2}$ b) $\frac{\partial^2 f}{\partial x^2} = -\frac{\mu}{T} \frac{\partial^2 f}{\partial t^2}$ c) $\frac{\partial^2 f}{\partial x^2} = -\frac{\mu}{T^2} \frac{\partial^2 f}{\partial t^2}$
- 5. The relation between velocity ν of the em wave and μ the refractive index of the dielectric is
 - a) $v = \frac{c}{n}$

b) $v = \frac{c^2}{n}$

- c) $v^2 = \frac{c}{n^2}$
- The direction of the induced emf is given by 6.
 - a) Faraday's law
- b) Laplace law
- c) Lenz's law

- 7. Which of the following is correct
 - a) $\ell = \ell o \sqrt{\frac{1 c^2}{v^2}}$ b) $\ell = \ell o \sqrt{\frac{1 v^2}{c^2}}$
- c) $\ell_o = \ell \sqrt{\frac{1 v^2}{c^2}}$

8.	Galiban Transformation equation, when the frame moves along positive X direction		
	a) $x^1 = x - vt$	$b) x = x^1 - vt$	c) $x = vt - x^1$
9.	Which of the following is correct		
	a) $m = mo \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$	b) $m = mo \left(1 - \frac{v^2}{c^2} \right)^{-1/2}$	$c) m = m_o \left(1 - \frac{v^2}{c^2} \right)$
10.	Space-time diagram has a) 4 real axes b) 3 real and imaginary axe c) 2 real of 2 imaginary axe		
11.	If a rod moves along the x-a a) x-axis	direction length contraction i b) y-axis	s observed along c) z-axis
12.	Dimensions perpendiculars a) contracted	to velocity are b) expanded	c) not contracted
13.	Zeroth component of Energ	gy-momentum 4 vector is	
	a) $P^{\circ} = \frac{E}{C}$	b) $P^{\circ} = EC$	c) $P^o = EC^2$
14.	If a charge q moves with a magnetic field is	velocity u in the frame S with	n electric field E, then the
	a) $B = \frac{\overline{U}.\overline{E}}{C^2}$	b) $B = \frac{\overline{U \times E}}{C^2}$	c) $\frac{U \times E}{C}$
15.	Expression for the transvers		
	$a) v^1 = v\sqrt{1-\beta^2}$	b) $v = v^1 \sqrt{1 - \beta^2}$	c) $v = v^1 \sqrt{1 + \beta^2}$
II	FILL IN THE BLANKS:		
16.	The direction of the induced emf is such that it always the change for its production.		
17.	For plane waves fields are over every plane to the direction of propagation.		
18.	first law holds good.	is a frame of refer	rence in which Newton's
19.	Doppler effect confirms rela	ativistic	
20.	The projectory of a charged motion.	particle in a uniform magne	etic field is
			•••

	PH/MC/ER34
III	STATE WHETHER TRUE OR FALSE:
21.	Eddy currents do not produce loss of energy.
22.	EM field carry both energy and momentum.
23.	Sum of reflection co-efficient and transmission co-efficient is always less than 1.
24.	The two mirrors in Michelson Morley experimental setup one highly silvered on their front faces to get multiple internal reflections.
25.	The world line of a light wave for which U=C is a straight line making a 45° angle with axes.
IV	ANSWER THE FOLLOWING:
26.	Define Henry.
27.	What is meant by invariant interval.
28.	Write down Einstein Relation between momentum and energy.
29.	State the principle of equivalence.

What is meant by monochromatic wave.

30.

STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI – 600 086.

(For candidates admitted during the academic year 2004-05 & thereafter)

SUBJECT CODE: PH/MC/ER54

B.Sc. DEGREE EXAMINATION NOVEMBER 2007

BRANCH III - PHYSICS FIFTH SEMESTER

COURSE : MAJOR – CORE

PAPER : **ELECTRO DYNAMICS & RELATIVITY**

TIME : 2 ½ HOURS MAX. MARKS : 70

SECTION - B

ANSWER ANY FIVE QUESTIONS: $(5 \times 5 = 25)$

- 1. Calculate the co-efficient of self inductance of a case of 1000 turns when a current of 2.5amp produces a magnetic flux of 0.5 micro weber.
- 2. Obtain the wave equation in one dimension.
- 3. Calculate the energy density of the em field.
- 4. Calculate the rest energy of an electron in joules and electron volts.
- 5. Calculate the electric field of a uniformly moving point charge.
- 6. Obtain the mass energy equivalence.
- 7. Calculate the speed of the electron which has kinetic energy 1.02 MeV. Given mass of the electron is 0.51 MeV.

SECTION - C

ANSWER ANY THREE QUESTIONS:

 $(3 \times 15 = 45)$

- 8. Derive Maxwells equations.
- 9. Calculate the Reflection and transmission co-efficient when em wave is incident normally.
- 10. a) Obtain Lorentz transformation equations.
 - b) A rod has of length 1mt when the rod is in a satellite moving with the velocity 0.8C relative to laboratory. What is the length of the rod as determined by an observer i) in the satellite ii) in the laboratory.

- 11. a) Derive the relativistic formula for variation of mass with velocity.
 - b) Calculate the kE of an e ⁻ moving with a velocity of 0.98 times the velocity of light in the lab system.
- 12. Discuss about longitudinal and transverse Doppler effect. Show term relativistic theory there is no classical transverse effect.

