STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086.
(For candidates admitted during the academic year 2004-05 \& thereafter)

SUBJECT CODE : PH/MC/ME44

B.Sc. DEGREE EXAMINATION APRIL 2007
 BRANCH III - PHYSICS
 FOURTH SEMESTER

REG. No. \qquad

COURSE	$:$	MAJOR - CORE
PAPER	$:$	MECHANICS
TIME	$:$	$\mathbf{3 0}$ MINS.

MAX. MARKS : 30

TO BE ANSWERED IN THE QUESTION PAPER ITSELF

SECTION - A

ANSWER ALL QUESTIONS:

$(30 \times 1=30)$

I CHOOSE THE CORRECT ANSWER:

1. The resultant of two velocities $12 \mathrm{~m} / \mathrm{s}$ cand $4 \mathrm{~m} / \mathrm{s}$ can never be
a) $16 \mathrm{~m} / \mathrm{s}$
b) $8 \mathrm{~m} / \mathrm{s}$
c) $10 \mathrm{~m} / \mathrm{s}$
d) $2 \mathrm{~m} / \mathrm{s}$
2. A particle is simultaneously subjected to two velocities ' u ' and ' v ' inclined at 90°. The resultant velocity is given by
a) $\sqrt{u^{2}+v^{2}}$
b) $\sqrt{u^{2}-v^{2}}$
c) $u+v$
d) $u-v$
3. A bomb is released from a horizontally flying aeroplane. The trajectory of the bomb is a
a) straight line
b) parabola
c) hyperbola
d) circle
4. The angle of projection for which the horizontal range and the maximum height of a projectile are equal, is
a) 45°
b) 60°
c) 76°
d) 30°
5. The maximum range of a projectile projected with some initial velocity is found to be 1000 m in the absence of wind and air resistance. The maximum height reached by the projectile is
a) 250 m
b) 500 m
c) 1000 m
d) 2000 m
6. A collision is said to be perfectly elastic when
a) $e=0$
b) e <1
c) $e=1$
d) $e>1$
7. A metal balls falls from a height of 10 m on a steel plate and bounces back to a height of 2.5 m . The coefficient of restitution is
a) 1
b) 0.75
c) 0.5
d) 0.25
8. The dimensions of impulse are equal to that of
a) Linear momentum
b) Force
c) Pressure
d) Velocity
9. The M.I of a solid sphere of mass ' M ' and radius ' R ' about a tangent is
a) $\frac{2}{5} M R^{2}$
b) $\frac{7}{5} M R^{2}$
c) $\frac{5}{7} M R^{2}$
d) $\frac{M R^{2}}{4}$
10. A system of mass ' M ' and Radius of gyration ' K ' is rotating with angular acceleration ' α '. The Torque acting on the system is
a) $\frac{1}{2} M K^{2} \alpha$
b) $M K^{2} \alpha$
c) $M K^{2} \alpha^{2} / 2$
d) $M K^{2} \alpha^{2} / 4$
11. The dimensional formula for angular momentum is
a) $\mathrm{ML}^{2} \mathrm{~T}^{-1}$
b) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
c) MLT^{-2}
d) $\mathrm{M}^{-1} \mathrm{LT}^{-2}$
12. Unit of moment of inertia is
a) kgm
b) $\mathrm{kg} \mathrm{m}^{2}$
c) $\mathrm{kg} \mathrm{m}^{-2}$
d) none
13. Two particles of equal masses are revolving in circular paths of radii r_{1} and r_{2} with the same period. The ratio of their centripetal force is
a) r_{1} / r_{2}
b) r_{1}^{2} / r_{2}^{2}
c) r_{2}^{2} / r_{1}^{2}
d) $\sqrt{r_{1} / r_{2}}$
14. A cyclist riding at a speed of $9.8 \mathrm{~m} / \mathrm{s}$ takes a turn round a circular road of radius 19.6 m . What is his inclination to the vertical?
a) 26.5°
b) 30°
c) 13°
d) 36.5°
15. The expression for critical velocity v_{c} is
a) $\frac{k r}{\rho \eta}$
b) $\frac{k \eta}{\rho r}$
c) $\frac{\eta \rho}{k r}$
d) $\frac{k}{\eta \rho r}$

II STATE WHETHER TRUE OR FALSE:
16. Moment of Inertia is a vector quantity.
17. A body can roll on a smooth inclined plane.
18. For a body having C.M, it must necessarily have C.G.
19. μ-space is a 6 - dimensional space.
20. When constraints are present, the number of degrees of freedom of a system is reduced.

III FILL IN THE BLANKS:
21. In projectile motion, at the highest point, the direction of velocity is \qquad .
22. In a compound pendulum, the period of oscillation is a minimum when \qquad .
23. In a compound pendulum, the centre of suspension and the centre of oscillation are
\qquad _.
24. For turbulent flow, the Reynold's number K must be greater than \qquad .
25. The equation $1 x+m y+n z=p$ represents a \qquad constraint.

IV ANSWER IN ONE OR TWO SENTENCES:
26. Define relative velocity between two moving particles.
27. State Newton's experimental law.
28. State the law of conservation of angular momentum.
29. What is a hodograph?
30. Define 'phase space'.
$\odot \odot \odot \odot \odot \odot \odot$

