STELLA MARIS COLLEGE(AUTNOMOUS), CHENNAI-86

(For candidates admitted from 2011-2012)

SUBJECT CODE: 11MT/MC/VL64

B.Sc DEGREE EXAMINATION, APRIL 2014

BRANCH I-MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR CORETime: 3 hoursPAPER: VECTOR SPACES AND LINEAR TRANSFORMATIONMax marks: 100

SECTION – A (10 X 2 = 20)

ANSWER ANY TEN QUESTIONS, EACH QUESTIONS CARRIES 2 MARKS.

- 1. Give two examples of vector spaces over the field of complex numbers..
- 2. List out all subspaces of R^2 over R...
- 3. Write down the condition for any two points in R^2 to be a basis for R^2 over R.
- 4. Define the dual of a vector space.
- 5. If S, T \in *Hom*(V,W) and v_iS = v_iT for all v_i of a basis of V, prove that S = T.
- 6. Define an inner product space and give an example.
- 7. Define an orthonormal set of vectors in an inner product space.
- 8. Show that 0 is an characteristic root of $T \in A(V)$ if and only if T is singular.
- 9. Define the rank of a linear transformation. If $T : V \rightarrow V$ is an isomorphism of an n-dimensional space V, then what is the rank of T?
- 10. Define the matrix of a linear transformation $T \in A(V)$ with respect to a basis of V.

SECTION -B(5x8 = 40)

ANSWER ANY FIVE QUESTIONS, EACH QUESTIONS CARRIES 5 MARKS.

- 11. If $v_1, v_2, ..., v_n$ are in V then prove that either they are linearly independent or some v_k is a linear combination of $v_1, v_2, ..., v_{k-1}$.
- 12. If S, T are subsets of a vector space V , prove that
 - (i). S \subseteq T implies L(S) \subseteq L(T).
 - (ii). L(L(S)) = L(S).
 - (iii). $L(S \cup T) = L(S) + L(T)$.
- 13. State and prove Schwarz inequality in an inner product space.
- 14. If V is a finite dimensional space over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.
- 15. If $\lambda_1, \lambda_2, ..., \lambda_n$ are distinct characteristic roots of $T \in A(V)$ and if $v_1, v_2, ..., v_n$ are characteristic vectors of *T* belonging to $\lambda_1, \lambda_2, ..., \lambda_n$ respectively, then prove that $v_1, v_2, ..., v_n$ are linearly independent over F.
- 16. Let U and V be vector spaces with bases $B=\{u_1, u_2, ..., u_n\}$ and $B' = \{v_1, v_2, ..., v_m\}$ and T: U \rightarrow V a linear transformation. IF u is a vector in U with image T(u), having coordinate vectors a and b relative to these bases, then b = Aa, where A = $[T\{u_1\}_{B'}....T(u_n)_{B'}]$.

17. Let V be a vector space over a field F and **0** be the zero element of V. Prove that (i). $\alpha 0 = 0$, for every $\alpha \in F$ (ii). $\alpha v = 0$, for every v in V (iii). $\alpha(-v) = -(\alpha v)$, for every $\alpha \in F$, $v \in V$ (iv) If $v \neq 0$, then $\alpha v = 0$ implies that $\alpha = 0$.

SECTION -C (2x20 = 40 ANSWER ANY TWO QUESTIONS

18. (a). Let V = R³ = {(x, y, z) | x, y, z ∈ R}, W₁= {(x, y, 0) | x, y ∈ R} and W₂ = {(0, 0, z) | z ∈ R}. Prove that V is a vector space over R and W₁, W₂ are subspaces of V. Further, prove that V is a direct sum of W₁ and W₂.
(b). Prove that any two vector spaces of same dimension are isomorphic.
(c). Define annihilator A(W) of a subspace W of a space V and prove that A(W) is a subspace of V.

- 19. (a). If V and W are vector spaces of dimensions of dimensions m and n respectively over F , prove that Hom(V,W) is of dimensions mn over F.
 (b). Prove that any finite dimensional inner product space V has an orthonormal space. . (10 + 10)
- 20. (a). If V is finite dimensional over F and if S, $T \in A(V)$, then prove that
 - (i). $r(ST) \leq r(T)$.
 - (ii). $r(TS) \leq r(T)$.

(iii). R(ST) = r(TS) = r(T) for S regular in A(V).

- (b). Define Similar matrices and give examples.
- (c). Define a diagonalizable matrix. (15+3+2)