STELLA MARIS COLLEGE(AUTNOMOUS), CHENNAI-86

(For candidates admitted from 2011-2012)
SUBJECT CODE: 11MT/MC/VL64

B.Sc DEGREE EXAMINATION, APRIL 2014

BRANCH I-MATHEMATICS
 SIXTH SEMESTER

COURSE: MAJOR CORE
 PAPER: VECTOR SPACES AND LINEAR TRANSFORMATION

Time: 3 hours
Max marks: 100

$$
\text { SECTION - A (10 X } 2=20)
$$

ANSWER ANY TEN QUESTIONS, EACH QUESTIONS CARRIES 2 MARKS.

1. Give two examples of vector spaces over the field of complex numbers..
2. List out all subspaces of R^{2} over R..
3. Write down the condition for any two points in R^{2} to be a basis for R^{2} over R.
4. Define the dual of a vector space.
5. If $\mathrm{S}, \mathrm{T} \in \operatorname{Hom}(V, W)$ and $\mathrm{v}_{\mathrm{i}} \mathrm{S}=\mathrm{v}_{\mathrm{i}} \mathrm{T}$ for all v_{i} of a basis of V , prove that $\mathrm{S}=\mathrm{T}$.
6. Define an inner product space and give an example.
7. Define an orthonormal set of vectors in an inner product space.
8. Show that 0 is an characteristic root of $T \in A(V)$ if and only if T is singular.
9. Define the rank of a linear transformation. If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is an isomorphism of an n -dimensional space V , then what is the rank of T ?
10. Define the matrix of a linear transformation $T \in A(V)$ with respect to a basis of V.

$$
\text { SECTION -B }(5 \times 8=40)
$$

ANSWER ANY FIVE QUESTIONS, EACH QUESTIONS CARRIES 5 MARKS.
11. If $v_{1}, v_{2}, \ldots ., v_{n}$ are in V then prove that either they are linearly independent or some v_{k} is a linear combination of $v_{1}, v_{2}, \ldots ., v_{k-1}$.
12. If S, T are subsets of a vector space V , prove that
(i). $\mathrm{S} \subseteq \mathrm{T}$ implies $\mathrm{L}(\mathrm{S}) \subseteq \mathrm{L}(\mathrm{T})$.
(ii). $\mathrm{L}(\mathrm{L}(\mathrm{S}))=\mathrm{L}(\mathrm{S})$.
(iii). $L(S \cup T)=L(S)+L(T)$.
13. State and prove Schwarz inequality in an inner product space.
14. If V is a finite dimensional space over F , then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0 .
15. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct characteristic roots of $T \in A(V)$ and if $v_{1}, v_{2}, \ldots, v_{n}$ are characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots ., \lambda_{n}$ respectively, then prove that $v_{1}, v_{2}, \ldots ., v_{n}$ are linearly independent over F .
16. Let U and V be vector spaces with bases $B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $B '=\left\{v_{1}, v_{2}, \ldots\right.$, $\left.\mathrm{v}_{\mathrm{m}}\right\}$ and $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ a linear transformation. IF u is a vector in U with image $\mathrm{T}(\mathrm{u})$, having coordinate vectors a and b relative to these bases, then $b=A a$, where $A=$ $\left[\mathrm{T}\left\{\mathrm{u}_{1}\right)_{\mathrm{B}}, \ldots . . \mathrm{T}\left(\mathrm{u}_{\mathrm{n}}\right)_{\mathrm{B}^{\prime}}\right]$.
17. Let V be a vector space over a field F and $\mathbf{0}$ be the zero element of V . Prove that (i). $\alpha 0=0$, for every $\alpha \in \mathrm{F} \quad$ (ii). ov $=0$, for every v in $\mathrm{V} \quad$ (iii). $\alpha(-\mathrm{v})=-(\alpha v)$, for every $\alpha \in \mathrm{F}, \mathrm{v} \in \mathrm{V}$ (iv) If $\mathrm{v} \neq 0$, then $\alpha v=0$ implies that $\alpha=0$.

> SECTION -C $(2 \times 20=40$ ANSWER ANY TWO QUESTIONS
18. (a). Let $V=R^{3}=\{(x, y, z) \mid x, y, z \in R\}, W_{1}=\{(x, y, 0) \mid x, y \in R\}$ and $W_{2}=\{(0,0, z) \mid z \in R\}$. Prove that V is a vector space over R and W_{1}, W_{2} are subspaces of V. Further, prove that V is a direct sum of W_{1} and W_{2}.
(b). Prove that any two vector spaces of same dimension are isomorphic.
(c). Define annihilator $A(W)$ of a subspace W of a space V and prove that $A(W)$ is a subspace of V.
19. (a). If V and W are vector spaces of dimensions of dimensions m and n respectively over F , prove that $\operatorname{Hom}(\mathrm{V}, \mathrm{W})$ is of dimensions mn over F .
(b). Prove that any finite dimensional inner product space V has an orthonormal space. .
20. (a). If V is finite dimensional over F and if $\mathrm{S}, T \in A(V)$, then prove that
(i). $\mathrm{r}(\mathrm{ST}) \leq \mathrm{r}(\mathrm{T})$.
(ii). $\mathrm{r}(\mathrm{TS}) \leq \mathrm{r}(\mathrm{T})$.
(iii). $R(S T)=r(T S)=r(T)$ for S regular in $A(V)$.
(b). Define Similar matrices and give examples.
(c). Define a diagonalizable matrix.
$(15+3+2)$

