STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2011-12)
SUBJECT CODE : 11MT/MC/VL64
B. Sc. DEGREE EXAMINATION, APRIL 2014

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A
ANSWER ALL QUESTIONS.
(10 X $2=20$)

1. Give two examples of vector spaces over the field of complex numbers.
2. List out all subspaces of \mathbb{R}^{2} over \mathbb{R}.
3. Write down the condition for any two points in \mathbb{R}^{2} to be a basis for \mathbb{R}^{2} over \mathbb{R}.
4. Define the dual of a vector space.
5. If $S, T \in \operatorname{Hom}(V, W)$ and $v_{i} S=v_{i} T$ for all v_{i} of a basis of V, prove that $S=T$.
6. Define an inner product space and give an example.
7. Define an orthonormal set of vectors in an inner product space.
8. Show that 0 is an characteristic root of $T \in A(V)$ if and only if T is singular.
9. Define the rank of a linear transformation. If $T: V \rightarrow V$ is an isomorphism of an n dimensional space V, then what is the rank of T ?
10. Define the matrix of a linear transformation $T \in A(V)$ with respect to a basis of V.

SECTION -B

ANSWER ANY FIVE QUESTIONS.
11. If $v_{1}, v_{2}, \ldots, v_{n}$ are in V then prove that either they are linearly independent or some v_{k} is a linear combination of $v_{1}, v_{2}, \ldots ., v_{k-1}$.
12. If S, T are subsets of a vector space V, prove that
(i) $S \subseteq T$ implies $L(S) \subseteq L(T)$.
(ii) $L(L(S))=L(S)$.
(iii) $L(S \cup T)=L(S)+L(T)$.
13. State and prove Schwarz inequality in an inner product space.
14. If V is a finite dimensional space over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0 .
15. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are distinct characteristic roots of $T \in A(V)$ and if $v_{1}, v_{2}, \ldots, v_{n}$ are characteristic vectors of T belonging to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ respectively, then prove that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent over F.
16. Proof : Let U and V be vector spaces with bases $B=\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}\right\}$ and $B^{\prime}=\left\{\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}, \ldots, \boldsymbol{v}_{\boldsymbol{m}}\right\}$ and $T: U \rightarrow V$ a linear transformation. If \boldsymbol{u} is a vector in U with image $T(\boldsymbol{u})$, having coordinate vectors \boldsymbol{a} and \boldsymbol{b} relative to these bases, then $\boldsymbol{b}=A \boldsymbol{a}$, where $A=\left[T\left\{\mathbf{u}_{1}\right)_{B^{\prime}}, \ldots . . T\left(\boldsymbol{u}_{n}\right)_{B^{\prime}}\right]$.
17. Let V be a vector space over a field F and 0 be the zero element of V. Prove that (i) $\alpha 0=0$, for every $\alpha \in F$ (ii) $0 v=0$, for every v in $V \quad$ (iii). $v(-\alpha)=-(\alpha v)$, for every $\alpha \in F, v \in V \quad$ (iv) If $v \neq 0$, then $\alpha v=0$ implies that $\alpha=0$.

SECTION -C

ANSWER ANY TWO QUESTIONS.

$$
(2 \times 20=40)
$$

18. (a) Let $V=\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in R\}, W_{1}=\{(x, y, 0) \mid x, y \in \mathbb{R}\}$ and $\mathrm{W}_{2}=\{(0,0, z) \mid z \in \mathbb{R}\}$. Prove that V is a vector space over \mathbb{R} and W_{1}, W_{2} are subspaces of V. Further, prove that V is a direct sum of W_{1} and W_{2}.
(b) Prove that any two vector spaces of same dimension are isomorphic.
(c) Define annihilator $A(W)$ of a subspace W of a space V and prove that $A(W)$ is a subspace of \hat{V}.
19. (a) If V and W are vector spaces of dimensions of dimensions m and n respectively over F, prove that $\operatorname{Hom}(V, W)$ is of dimensions $m n$ over F.
(b) Prove that any finite dimensional inner product space V has an orthonormal space.
$(10+10)$
20. (a) If V is finite dimensional over F and if $S, T \in A(V)$, then prove that
(i). $r(S T) \leq r(T)$.
(ii). $r(T S) \leq r(T)$.
(iii). $r(S T)=r(T S)=r(T)$ for S regular in $A(V)$.
(b) Define Similar matrices and give examples.
(c) Define a diagonalizable matrix.
