STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086

(For candidates admitted from the academic year 2011-12)

SUBJECT CODE: 11MT/MC/VL64

B. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE : MAJOR CORE

PAPER : VECTOR SPACES AND LINEAR TRANSFORMATIONS

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL QUESTIONS.

 $(10 \times 2 = 20)$

- 1. Give two examples of vector spaces over the field of complex numbers.
- 2. List out all subspaces of \mathbb{R}^2 over \mathbb{R} .
- 3. Write down the condition for any two points in \mathbb{R}^2 to be a basis for \mathbb{R}^2 over \mathbb{R} .
- 4. Define the dual of a vector space.
- 5. If $S, T \in Hom(V, W)$ and $v_i S = v_i T$ for all v_i of a basis of V, prove that S = T.
- 6. Define an inner product space and give an example.
- 7. Define an orthonormal set of vectors in an inner product space.
- 8. Show that 0 is an characteristic root of $T \in A(V)$ if and only if T is singular.
- 9. Define the rank of a linear transformation. If $T: V \rightarrow V$ is an isomorphism of an n-dimensional space V, then what is the rank of T?
- 10. Define the matrix of a linear transformation $T \in A(V)$ with respect to a basis of V.

SECTION -B

ANSWER ANY FIVE QUESTIONS.

(5x8 = 40)

- 11. If $v_1, v_2, ..., v_n$ are in V then prove that either they are linearly independent or some v_k is a linear combination of $v_1, v_2, ..., v_{k-1}$.
- 12. If S, T are subsets of a vector space V, prove that
 - (i) $S \subseteq T$ implies $L(S) \subseteq L(T)$.
 - (ii) L(L(S)) = L(S).
 - (iii) $L(S \cup T) = L(S) + L(T)$.
- 13. State and prove Schwarz inequality in an inner product space.
- 14. If V is a finite dimensional space over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.
- 15. If $\lambda_1, \lambda_2,, \lambda_n$ are distinct characteristic roots of $T \in A(V)$ and if $v_1, v_2,, v_n$ are characteristic vectors of T belonging to $\lambda_1, \lambda_2,, \lambda_n$ respectively, then prove that $v_1, v_2,, v_n$ are linearly independent over F.

- 16. Proof: Let U and V be vector spaces with bases $B = \{u_1, u_2, ..., u_n\}$ and $B' = \{v_1, v_2, ..., v_m\}$ and $T: U \to V$ a linear transformation. If u is a vector in U with image T(u), having coordinate vectors a and b relative to these bases, then b = Aa, where $A = [T\{u_1\}_{B}, ..., T\{u_n\}_{B}]$.
- 17. Let V be a vector space over a field F and 0 be the zero element of V. Prove that (i) $\alpha 0 = 0$, for every $\alpha \in F$ (ii) 0v = 0, for every v in V (iii). $v(-\alpha) = -(\alpha v)$, for every $\alpha \in F$, $v \in V$ (iv) If $v \neq 0$, then $\alpha v = 0$ implies that $\alpha = 0$.

SECTION -C

ANSWER ANY TWO QUESTIONS.

(2x20 = 40)

- 18. (a) Let $V = \mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in R\}$, $W_1 = \{(x, y, 0) \mid x, y \in \mathbb{R}\}$ and $W_2 = \{(0, 0, z) \mid z \in \mathbb{R}\}$. Prove that V is a vector space over \mathbb{R} and W_1 , W_2 are subspaces of V. Further, prove that V is a direct sum of W_1 and W_2 .
 - (b) Prove that any two vector spaces of same dimension are isomorphic.
 - (c) Define annihilator A(W) of a subspace W of a space V and prove that A(W) is a subspace of V. (7+8+5)
- 19. (a) If V and W are vector spaces of dimensions of dimensions m and n respectively over F, prove that Hom(V, W) is of dimensions mn over F.
 - (b) Prove that any finite dimensional inner product space V has an orthonormal space.

(10 + 10)

- 20. (a) If V is finite dimensional over F and if S, $T \in A(V)$, then prove that
 - (i). $r(ST) \leq r(T)$.
 - (ii). $r(TS) \leq r(T)$.
 - (iii). r(ST) = r(TS) = r(T) for S regular in A(V).
 - (b) Define Similar matrices and give examples.
 - (c) Define a diagonalizable matrix.

(15+3+2)

