STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS FOURTH SEMESTER

COURSE: MAJOR COREPAPER: SEQUENCES AND SERIES, FOURIER SERIESTIME: 3 HOURSMAX. MARKS : 100

SECTION – A

ANSWER ALL THE QUESTIONS:

 $(10 \times 2 = 20)$

- 1. Define one-one function.
- 2. Prove that the set of integers is countable.
- 3. Define limit of a sequence.
- 4. Give an example of a sequence that is oscillating and bounded.
- 5. Find the limit superior and limit inferior of 1, 2, 3, 1, 2, 3, 1, 2, 3...
- 6. Define Cauchy sequence.
- 7. Define alternating series and give an example.
- 8. Test the convergence of the series 1 + 1 + 1 + ...
- 9. Define even function and give an example.
- 10. Find the Fourier coefficient a_0 for $f(x) = x \pi$ in the interval $(-\pi, \pi)$.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. If $f: A \to B$ and if $X \subset B, Y \subset B$, Prove that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- 12. If $\{s_n\}_{n=1}^{\infty}$ is a sequence of non-negative numbers and if $\lim_{n \to \infty} s_n = L$, Prove that $L \ge 0$.
- 13. Show that the sequence $\{s_n\}_{n=1}^{\infty}$ where $s_n = \frac{n^2 + 1}{2n^2 + 5}, n \in I$ converges to $\frac{1}{2}$.
- 14. If the sequence $\{s_n\}_{n=1}^{\infty}$ of real numbers is convergent to L, Prove that any subsequence of $\{s_n\}_{n=1}^{\infty}$ is also convergent to L.

..2

 $(5 \times 8 = 40)$

11MT/MC/SF44

15. Prove that the sequence $\{s_n\}_{n=1}^{\infty}$ where $s_n = \left(1 + \frac{1}{n}\right)^n$ is convergent.

16. (i) If
$$0 < x < 1$$
, Prove that $\sum_{n=1}^{\infty} x^n$ converges to $\frac{1}{1-x}$
(ii) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

17. Obtain the half range cosine series for f(x) = x in $(0, \pi)$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. a) Prove that $\chi_{A\cup B} = \max(\chi_A, \chi_B)$ for the characteristic function χ .

- b) Prove that countable union of countable sets is countable.
- c) Prove that every convergent sequence is bounded. (7+7+6)

19. a) If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequences of real numbers with $\lim_{n \to \infty} s_n = L$, and $\lim_{n \to \infty} t_n = M$, then prove that $\lim_{n \to \infty} s_n t_n = LM$.

b) If $\{a_n\}_{n=1}^{\infty}$ is a non increasing sequence of positive numbers such that $\lim_{n \to \infty} a_n = 0$, then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent. (10+10)

20. a) Find the half range sine series for $f(x) = \begin{cases} kx, 0 \le x \le \frac{\pi}{2} \\ k(\pi - x), \frac{\pi}{2} \le x \le \pi \end{cases}$.

b) Determine the Fourier series expansion for f(x) = x in the interval $(-\pi, \pi)$. (10+10)

 $(2 \times 20 = 40)$