STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600086 (For candidates admitted from the academic year 2011-12 \& thereafter)

SUBJECT CODE : 11MT/MC/SF44

B. Sc. DEGREE EXAMINATION, APRIL 2014
 BRANCH I - MATHEMATICS
 FOURTH SEMESTER

COURSE	$:$ MAJOR CORE	
PAPER	$:$	SEQUENCES AND SERIES, FOURIER SERIES
TIME	$:$	3 HOURS

SECTION - A

ANSWER ALL THE QUESTIONS:
$(10 \times 2=20)$

1. Define one-one function.
2. Prove that the set of integers is countable.
3. Define limit of a sequence.
4. Give an example of a sequence that is oscillating and bounded.
5. Find the limit superior and limit inferior of $1,2,3,1,2,3,1,2,3 \ldots$
6. Define Cauchy sequence.
7. Define alternating series and give an example.
8. Test the convergence of the series $1+1+1+\ldots$
9. Define even function and give an example.
10. Find the Fourier coefficient a_{0} for $f(x)=x-\pi$ in the interval $(-\pi, \pi)$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. If $f: A \rightarrow B$ and if $X \subset B, Y \subset B$, Prove that $f^{-1}(X \cup Y)=f^{-1}(X) \cup f^{-1}(Y)$.
12. If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence of non-negative numbers and if $\lim _{n \rightarrow \infty} s_{n}=L$, Prove that $L \geq 0$.
13. Show that the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where $s_{n}=\frac{n^{2}+1}{2 n^{2}+5}, n \in I$ converges to $\frac{1}{2}$.
14. If the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of real numbers is convergent to L, Prove that any subsequence of $\left\{S_{n}\right\}_{n=1}^{\infty}$ is also convergent to L.
15. Prove that the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ where $s_{n}=\left(1+\frac{1}{n}\right)^{n}$ is convergent.
16. (i) If $0<x<1$, Prove that $\sum_{n=1}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$.
(ii) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
17. Obtain the half range cosine series for $f(x)=x$ in $(0, \pi)$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

18. a) Prove that $\chi_{A \cup B}=\max \left(\chi_{A}, \chi_{B}\right)$ for the characteristic function χ.
b) Prove that countable union of countable sets is countable.
c) Prove that every convergent sequence is bounded.
19. a) If $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are sequences of real numbers with $\lim _{n \rightarrow \infty} s_{n}=L$, and $\lim _{n \rightarrow \infty} t_{n}=M$, then prove that $\lim _{n \rightarrow \infty} s_{n} t_{n}=L M$.
b) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a non increasing sequence of positive numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$, then prove that the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ is convergent.
20. a) Find the half range sine series for $f(x)=\left\{\begin{array}{l}k x, 0 \leq x \leq \frac{\pi}{2} \\ k(\pi-x), \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$.
b) Determine the Fourier series expansion for $f(x)=x$ in the interval $(-\pi, \pi)$.
(10+10)
