STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE: 11MT/MC/IC24

B. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE : MAJOR CORE

PAPER : INTEGRAL CALCULUS

TIME : 3 HOURS MAX. MARKS : 100

SECTION - A

ANSWER ALL THE QUESTIONS:

(10X2=20)

- 1. Evaluate $\int \log x \, dx$.
- 2. Evaluate $\int \frac{\cot x}{\log \sin x} dx$
- 3. Evaluate $\int \frac{dx}{4+9x^2}$.
- 4. Find $\int_0^1 x (1-x)^n dx$.
- 5. Evaluate $\int_0^{\pi/2} \sin^{10}x \ dx$.
- 6. Evaluate $\int x^2 e^x$ by using Bernoulli's formula for integration by parts.
- 7. Evaluate $\iint xy \ dx \ dy$ takes over the positive quadrant of the circle $x^2 + y^2 = a^2$.
- 8. Find the Jacobian of x, y with respect to r, θ if $x = r \cos \theta$, $y = r \sin \theta$.
- 9. Define Beta and Gamma function.
- 10. Prove that $\Gamma(n+1) = n \Gamma(n)$.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

(5X8=40)

- 11. Evaluate $\int \frac{3x-2}{\sqrt{4x^2-4x-5}} dx.$
- 12. Evaluate $\int_0^{\pi/4} \log(1 + \tan \theta) d\theta$.
- 13. Show that $\int_0^{\pi/2} x^2 \sin x \, dx = \pi 2$.
- 14. By changing into polar coordinates evaluate the integral $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$.
- 15. Evaluate $\int_1^2 \int_1^x xy^2 dy dx$.
- 16. Evaluate $\iint \int xyz \, dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ by transforming into spherical coordinates.

17. Evaluate $\int_0^\infty e^{-x^2} dx$.

18. Evaluate $\int_0^{\pi/2} \sin^7\theta \cos^5\theta \ d\theta$.

SECTION - C

ANSWER ANY TWO QUESTIONS:

(2X20=40)

19. a) Evaluate
$$\int (3x-2)\sqrt{x^2+x+1} \ dx$$
. (8)

b) If $u_n = \int_0^{\pi/2} x^n \sin x \, dx$, n is a positive integer. Prove that

$$u_n + n(n-1)u_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}.$$
 (8)

c) Find $\int x \tan^{-1} x \, dx$. (4)

20. a) Evaluate
$$\int_0^{\pi/2} \log(\sin x) dx.$$
 (8)

b) Evaluate
$$\int e^x \frac{x+1}{(x+2)^2} dx$$
. (4)

c) Change the order of integration in the integral $\int_0^a \int_{x^2/a}^{2a-x} xy \, dy \, dx$ and evaluate it.

(8)

21. a) Evaluate $\iiint \frac{dx \, dy \, dz}{(x+y+z+1)^3}$ taken over the volume bounded by the planes

$$x = 0, y = 0, z = 0, x + y + z = 1.$$
 (10)

b) Prove the relation between Beta and Gamma function. (10)