STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12)

SUBJECT CODE : 11MT/MC/GC64 B. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE: MAJOR COREPAPER: GRAPH THEORY AND COMBINETORICSTIME: 3 HOURSMAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:

 $10 \ge 2 = 20$

- 1. Define a bipartite graph and give an example.
- 2. Prove that $\delta \leq \frac{2q}{p} \leq \Delta$.
- 3. Prove that every cubic graph has an even number of points.
- 4. Give a graph which is Hamiltonian but not Eulerian.
- 5. Define centre of a tree.
- 6. Write the chromatic number of K_8 .
- 7. Define indegree and outdegree of a vertex.
- 8. State the pigeonhole principle.
- 9. Find P(18;3,4,6).

10. Write the ordinary generating function of the sequence (1,1,1,1,...)

SECTION-B

ANSWER ANY FIVE QUESTIONS:

5 X 8 = 40

11. a) Show that in any group of two or more people, there are always two with	
exactly the same number of friends inside the group.	
b) Prove that in any graph G the number of points of odd degree is even.	(4 + 4)
12. Prove that a closed walk of odd length contains a cycle.	
13. a) Prove that every nontrivial tree G has at least two vertices of degree 1.	
b) Prove that every connected graph has a spanning tree.	(4+4)
14. Obtain the adjacency and incidence matrix for the following graph.	

- 15. State and prove Euler's theorem for planar graphs.
- 16. In any connected plane (p,q) graph $(p \ge 3)$ with *r* faces prove that

$$q \ge \frac{3r}{2}$$
 and $q \le 3p - 6$. Hence prove that K_5 is not planar.

- 17. Find the Number of (a) 2-digit even numbers, (b) 2-digit odd numbers, (c) 2-digit odd numbers with distinct digits, (d) 2-digit even numbers with distinct digits.
- 18. Find the coefficient of x^{27} in a) $(x^4 + x^5 + x^6 +)^5$ and b) $(x^4 + 2x^5 + 3x^6 +)^5$

SECTION-C

ANSWER ANY TWO QUESTIONS:

- 19. a) Prove that in a graph G any u v walk contains a u v path.
 b) Prove that Γ(G) = Γ(G).
 - c) Prove that a graph is bipartite if and only if all its cycles are of even length.

(5 + 5 + 10)

2 X20 = 40

20. a) Let G be a (p,q) graph. Then prove that following are equivalent.

- i) G is a tree.
- ii) Every two points of G are joined by a unique path.
- iii) G is connected and p = q + 1.
- iv) G is acyclic and p = q + 1.
- (b) State and prove five colour theorem.

(10 + 10)

21. a) Find the number of permutations of the digit 1 through 9 in which

- i) none of the blocks 23, 45and678 appears.
- ii) none of the blocks 34, 45and738 appears
- b) Prove the following formula for the Fibonacci numbers:

$$f(n) = C(n,0) + C(n-1,1) + C(n-2,2) + \dots \dots$$
(10+10)

####