STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2011-12)
SUBJECT CODE : 11MT/MC/GC64
B. Sc. DEGREE EXAMINATION, APRIL 2014

BRANCH I - MATHEMATICS
SIXTH SEMESTER
COURSE : MAJOR CORE
PAPER : GRAPH THEORY AND COMBINETORICS
TIME : 3 HOURS
MAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:

$10 \times 2=20$

1. Define a bipartite graph and give an example.
2. Prove that $\delta \leq \frac{2 q}{p} \leq \Delta$.
3. Prove that every cubic graph has an even number of points.
4. Give a graph which is Hamiltonian but not Eulerian.
5. Define centre of a tree.
6. Write the chromatic number of K_{8}.
7. Define indegree and outdegree of a vertex.
8. State the pigeonhole principle.
9. Find $P(18 ; 3,4,6)$.
10. Write the ordinary generating function of the sequence $\langle 1,1,1,1, \ldots$.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

$5 \times 8=40$
11. a) Show that in any group of two or more people, there are always two with exactly the same number of friends inside the group.
b) Prove that in any graph G the number of points of odd degree is even.
12. Prove that a closed walk of odd length contains a cycle.
13. a) Prove that every nontrivial tree G has at least two vertices of degree 1.
b) Prove that every connected graph has a spanning tree.
$(4+4)$
14. Obtain the adjacency and incidence matrix for the following graph.
15. State and prove Euler's theorem for planar graphs.
16. In any connected plane (p, q) graph $(p \geq 3)$ with r faces prove that $q \geq \frac{3 r}{2}$ and $q \leq 3 p-6$. Hence prove that K_{5} is not planar.
17. Find the Number of (a) 2-digit even numbers, (b) 2-digit odd numbers, (c) 2-digit odd numbers with distinct digits, (d) 2-digit even numbers with distinct digits.
18. Find the coefficient of x^{27} in a) $\left(x^{4}+x^{5}+x^{6}+\ldots . .\right)^{5}$ and b) $\left(x^{4}+2 x^{5}+3 x^{6}+\ldots . .\right)^{5}$

SECTION-C

ANSWER ANY TWO QUESTIONS:

$2 \mathrm{X} 20=40$
19. a) Prove that in a graph G any $u-v$ walk contains a $u-v$ path.
b) Prove that $\Gamma(G)=\Gamma(\bar{G})$.
c) Prove that a graph is bipartite if and only if all its cycles are of even length.
20. a) Let G be a (p, q) graph. Then prove that following are equivalent.
i) G is a tree.
ii) Every two points of G are joined by a unique path.
iii) G is connected and $p=q+1$.
iv) G is acyclic and $p=q+1$.
(b) State and prove five colour theorem.
21. a) Find the number of permutations of the digit 1 through 9 in which
i) none of the blocks 23, 45and678 appears.
ii) none of the blocks 34 , 45and738 appears
b) Prove the following formula for the Fibonacci numbers:

$$
\begin{equation*}
f(n)=C(n, 0)+C(n-1,1)+C(n-2,2)+\ldots \ldots . . \tag{10+10}
\end{equation*}
$$

