STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011–12)

SUBJECT CODE : 11MT/MC/CA64

B. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH I – MATHEMATICS SIXTH SEMESTER

COURSE	:	MAJOR CORE
PAPER	:	COMPLEX ANALYSIS
TIME	:	3 HOURS

MAX. MARKS : 100

SECTION-A

ANSWER ALL QUESTIONS:

- 1. Represent the function $w = \frac{z}{1+z}$ in the form f(x, y) = u(x, y) + iv(x, y).
- 2. Is the function $f(z) = \overline{z}$ differentiable? Justify your answer.
- 3. Define a homothetic transformation.
- 4. Define the mapping $w = \cos z$.
- 5. Evaluate, using Cauchy's integral formula, $\frac{1}{2\pi i} \int_C \frac{z^2+5}{z-3} dz$ where C is |z| = 4.
- 6. State Morera's theorem.
- 7. Define removable singularity.
- 8. Obtain the Taylor's series of the function $f(z) = \frac{z-1}{z+1}$ about z = 0.
- 9. Find the residue of the function $f(z) = \frac{e^z}{z-2}$.
- 10. State argument theorem.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

- 11. If f(z) = u(x, y) + iv(x, y) is differentiable at $z_0 = x_0 + iy_0$, then prove that $u_x(x_0, y_0) = v_y(x_0, y_0)$ and $u_y(x_0, y_0) = -v_x(x_0, y_0)$.
- 12. Define cross ratio and prove that any bilinear transformation preserves cross ratio.
- 13. State and prove Cauchy's inequality and hence prove that a bounded entire function in the complex plane is constant.
- 14. Let f(z) be analytic everywhere inside of a circle C with center at z_0 and radius R. then

prove that
$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
 for all z in $|z - z_0| < R$.

..2

5 X 8 = 40

 $10 \ge 2 = 20$

2 X20 = 40

- 15. State and prove Rouches theorem.
- 16. Using the method of contour integration, evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$.
- 17. Evaluate $\int_C \frac{z^2 dz}{(z-2)(z+3)}$ where *C* is the circle |z| = 4.

SECTION-C

ANSWER ANY TWO QUESTIONS:

- 18. a) Define the harmonic function and prove that the real and imaginary part of an analytic function are harmonic functions.
 - b) Find the analytic function whose real part is $u(x, y) = 2x x^3 + 3xy^2$ using Milne-Thomson method.
 - c) Discuss the transformation $w = z^2$. (6+6+8)
- 19. a) Obtain the bilinear transformation which maps -1,0,1 of the z plane onto -1,-i,1 of the w plane.
 - b) Let f(z) be analytic inside and on a simple closed curve *C*. If z_0 is any point in the interior of *C* then prove that $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z z_0} dz$.
 - c) Obtain the Laurent expansion of the function $f(z) = \frac{-1}{(z-1)(z-2)}$ in the region 1 < |z| < 2. (7+8+5)
- 20. a) State and prove residue theorem.
 - b) Using the method of contour integration, prove that $\int_0^\infty \frac{dx}{(x^2+1)^2} dx = \frac{\pi}{4}$.
 - c) Prove that the function f(z) is conformal at z_0 if f(z) is analytic at z_0 and $f'(z_0) \neq 0.$ (6+8+6)