STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086

(For candidates admitted from the academic year 2011-12)
SUBJECT CODE : 11MT/MC/CA64

B. Sc. DEGREE EXAMINATION, APRIL 2014

BRANCH I - MATHEMATICS
SIXTH SEMESTER

COURSE : MAJOR CORE
 PAPER : COMPLEX ANALYSIS
 TIME : 3 HOURS

MAX. MARKS : 100
SECTION-A
ANSWER ALL QUESTIONS:
$10 \times 2=20$

1. Represent the function $w=\frac{z}{1+z}$ in the form $f(x, y)=u(x, y)+i v(x, y)$.
2. Is the function $f(z)=\bar{z}$ differentiable? Justify your answer.
3. Define a homothetic transformation.
4. Define the mapping $w=\cos z$.
5. Evaluate, using Cauchy's integral formula, $\frac{1}{2 \pi i} \int_{C} \frac{z^{2}+5}{z-3} d z$ where C is $|z|=4$.
6. State Morera's theorem.
7. Define removable singularity.
8. Obtain the Taylor's series of the function $f(z)=\frac{z-1}{z+1}$ about $z=0$.
9. Find the residue of the function $f(z)=\frac{e^{z}}{z-2}$.
10. State argument theorem.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

11. If $f(z)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$, then prove that $u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)$ and $u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)$.
12. Define cross ratio and prove that any bilinear transformation preserves cross ratio.
13. State and prove Cauchy's inequality and hence prove that a bounded entire function in the complex plane is constant.
14. Let $f(z)$ be analytic everywhere inside of a circle C with center at z_{0} and radius R. then prove that $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(z_{0}\right)}{n!}\left(z-z_{0}\right)^{n}$ for all z in $\left|z-z_{0}\right|<R$.
15. State and prove Rouches theorem.
16. Using the method of contour integration, evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$.
17. Evaluate $\int_{C} \frac{z^{2} d z}{(z-2)(z+3)}$ where C is the circle $|z|=4$.

SECTION-C

ANSWER ANY TWO QUESTIONS:
 $2 \mathrm{X20}=40$

18. a) Define the harmonic function and prove that the real and imaginary part of an analytic function are harmonic functions.
b) Find the analytic function whose real part is $u(x, y)=2 x-x^{3}+3 x y^{2}$ using MilneThomson method.
c) Discuss the transformation $w=z^{2}$.
19. a) Obtain the bilinear transformation which maps $-1,0,1$ of the z - plane onto $-1,-i, 1$ of the w - plane.
b) Let $f(z)$ be analytic inside and on a simple closed curve C. If z_{0} is any point in the interior of C then prove that $f\left(z_{o}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} d z$.
c) Obtain the Laurent expansion of the function $f(z)=\frac{-1}{(z-1)(z-2)}$ in the region

$$
\begin{equation*}
1<|z|<2 \tag{7+8+5}
\end{equation*}
$$

20. a) State and prove residue theorem.
b) Using the method of contour integration, prove that $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi}{4}$.
c) Prove that the function $f(z)$ is conformal at z_{0} if $f(z)$ is analytic at z_{o} and $f^{\prime}\left(z_{0}\right) \neq 0$.

$A A A A A A A A A A$

