B. Sc. DEGREE EXAMINATION, APRIL 2014
 BRANCH I - MATHEMATICS
 SECOND SEMESTER
 MAX. MARKS : 100

$\begin{array}{ll}\text { COURSE } & \text { : MAJOR CORE } \\ \text { PAPER } & \text { : ANALYTICAL GEOMETRY }\end{array}$
TIME : 3 HOURS

SECTION A

Answer All Questions:

1. Show that the curve given by $4 x^{2}-4 x y+4 y^{2}=100$ is an ellipse.
2. Write the condition for the general second degree equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ to represent a rectangular hyperbola.
3. Find the eccentricity of the ellipse if $y=x$ and $3 y=-2 x$ are a pair of its conjugate diameters.
4. Find the angle between the asymptotes of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
5. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=5$
6. Write the equation of plane in the normal and the intercept forms.
7. Find the equation of the straight line joining the points $(0,0,0)$ and $(5,-2,3)$.
8. Write the condition for the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$ to be parallel to the plane $a x+b y+c z+d=0$.
9. Show that the intersection of two spheres represents a plane.
10. Write the condition for the general homogeneous quadric in three variables x, y, z
$F(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 f y z+2 g z x+2 h x y=0$ to represent a right circular cone.

SECTION B

Answer Any Five Questions:

11. Find the centre of the conic given by the general second degree equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

12. Prove that $4\left(C P^{2}-C Q^{2}\right)=\left(S P-S^{\prime} P\right)^{2}-\left(S Q-S^{\prime} Q\right)^{2}$ where $C P$ and $C Q$ are conjugate diameters of an ellipse.
13. The asymptotes of a hyperbola are parallel to $2 x+3 y=0$ and $3 x-2 y=0$.Its centre is at $(1,2)$ and it passes through the point $(5,3)$. Find its equation and its conjugate.
14. Find the equation of plane passing through the points $(2,1,1)$ and $(3,2,2)$ and perpendicular to the plane $x+2 y-5 z=3$.
15. Find the equation of the plane which contains two parallel lines

$$
\frac{x-3}{1}=\frac{y-2}{-4}=\frac{z-1}{5} \text { and } \frac{x-1}{1}=\frac{y+1}{-4}=\frac{z-2}{5} .
$$

16. Find the points on the sphere $x^{2}+y^{2}+z^{2}+2 x-4 z-4=0$ at which the tangent plane is parallel to the plane $x-2 y-2 z+1=0$.
17. Find the equation of a right circular cone whose vertex is O, axis is $O Z$ and the semivertical angle α.

SECTION C

Answer Any Two Questions:
$2 \times 20=40$
18. a. Find the length and positions of the axes of the central conic

$$
a x^{2}+2 h x y+b y^{2}=1
$$

b. Prove that the acute angle between two conjugate diameters of an ellipse is minimum when they are equal.
19. a. Find the equation of the hyperbola conjugate to the hyperbola

$$
4 x^{2}+13 x y+3 y^{2}+x+3 y-25=0 \text { and also the equations of the asymptotes. }
$$

b. A variable plane is at a constant distance p from the origin and meets the axes at A, B, C. Show that the locus of the centroid of the tetrahedron $O A B C$ is

$$
x^{-2}+y^{-2}+z^{-2}=16 p^{-2}
$$

20. a. Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}$ and $\frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Also find the point of intersection.
b. Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0 ; x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.
