STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted from the academic year 2011-12 & thereafter)

SUBJECT CODE : 11MT/AC/MP24

B. Sc. DEGREE EXAMINATION, APRIL 2014 BRANCH III – PHYSICS SECOND SEMESTER

COURSE: ALLIED COREPAPER: MATHEMATICS FOR PHYSICS - IITIME: 3 HOURS

MAX. MARKS : 100

SECTION – A

ANSWER ALL QUESTIONS:

- (10x2=20)
- 1. Form the partial differential equation by eliminating the arbitrary constants from $z = ax^3 + by^3$.
- 2. Find the complete integrals of the equation $p^2 + q^2 = m^2$.
- 3. Find $L(\cos^2 t)$.
- 4. Find $L^{-1}\left(\frac{s+3}{s^2+6s+9}\right)$.
- 5. Find the Fourier coefficient a_0 for the function $f(x) = \cos x$, $-\pi < x < \pi$.
- 6. Find the half range sine series for the function f(x) = x in the interval $(0, \pi)$.
- 7. If f(z) and f(z) are analytic in a region. Show that f(z) is constant in that region.
- 8. Show that $u = x^3 3xy^2$ is a harmonic function.
- 9. Find the Taylor's series for e^z about z = 1.
- 10. Find the order of the pole z = 0 in the relation $\frac{1 \sin z}{z^3}$.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

- 11. Form the partial differential equation by eliminating the arbitrary function \emptyset from the relation $\emptyset(x^2 + y^2 + z^2, xyz)$.
- 12. Solve $z = p^2 + q^2$.
- 13. Find $L(cosht sin2t + t^2 e^{-2t})$.

(5x8=40)

- 14. Find the Fourier series for the function $f(x) = k \quad 0 < x < \pi$
- 15. Show that the function u(x, y) = sinx coshy is harmonic. Find its harmonic conjugate v(x, y) and the analytic function.

 $-k -\pi < x < 0$

- 16. Let f(z) be an analytic function. Prove that its real and imaginary parts are harmonic.
- 17. Find the residues of $\frac{z^2 2z}{(z+1)^2(z^2+4)}$ at the poles z = -1 and z = 2i.

SECTION-C

ANSWER ANY TWO QUESTIONS:

18. (a) Solve (mz - ny)p + (nx - lz)q = ly - mx. (b) Using Laplace transform solve $(D^2 + D)y = t^2 + 2t$ where y(0) = 4, y'(0) = -2.

19. Express $f(x) = (\pi - x)^2$ as a Fourier series of period 2π in the interval

 $0 < x < 2\pi$. Hence deduce the sum of the series $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$

20. (a) Solve $p^2 + q^2 = x^2 + y^2$.

(b) Find the residue at z = 0 of the function $f(z) = \frac{1}{z + z^2}$

(c) Prove that the limit of a function is unique.

(2x20=40)