B. Sc. DEGREE EXAMINATION, APRIL 2014
 BRANCH III - PHYSICS
 SECOND SEMESTER

COURSE	$:$ ALLIED CORE
PAPER	$:$ MATHEMATICS FOR PHYSICS - II
TIME	$: 3$ HOURS

SECTION - A

ANSWER ALL QUESTIONS:

(10x2=20)

1. Form the partial differential equation by eliminating the arbitrary constants from

$$
z=a x^{3}+b y^{3}
$$

2. Find the complete integrals of the equation $p^{2}+q^{2}=m^{2}$.
3. Find $L\left(\cos ^{2} t\right)$.
4. Find $L^{-1}\left(\frac{s+3}{s^{2}+6 s+9}\right)$.
5. Find the Fourier coefficient a_{0} for the function $f(x)=\cos x,-\pi<x<\pi$.
6. Find the half range sine series for the function $f(x)=x$ in the interval $(0, \pi)$.
7. If $f(z)$ and $\overline{f(z)}$ are analytic in a region. Show that $f(z)$ is constant in that region.
8. Show that $u=x^{3}-3 x y^{2}$ is a harmonic function.
9. Find the Taylor`s series for e^{z} about $z=1$.
10. Find the order of the pole $z=0$ in the relation $\frac{1-\sin z}{z^{3}}$.

SECTION-B

ANSWER ANY FIVE QUESTIONS:

11. Form the partial differential equation by eliminating the arbitrary function \emptyset from the relation $\emptyset\left(x^{2}+y^{2}+z^{2}, x y z\right)$.
12. Solve $z=p^{2}+q^{2}$.
13. Find $L\left(\cosh t \sin 2 t+t^{2} e^{-2 t}\right)$.

$$
-k-\pi<x<0
$$

14. Find the Fourier series for the function $f(x)=$

$$
k \quad 0<x<\pi
$$

15. Show that the function $u(x, y)=\sin x \cosh y$ is harmonic. Find its harmonic conjugate $v(x, y)$ and the analytic function.
16. Let $f(z)$ be an analytic function. Prove that its real and imaginary parts are harmonic.
17. Find the residues of $\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}$ at the poles $z=-1$ and $z=2 i$.

SECTION-C

ANSWER ANY TWO QUESTIONS:

18. (a) Solve $(m z-n y) p+(n x-l z) q=l y-m x$.
(b) Using Laplace transform solve $\left(D^{2}+D\right) y=t^{2}+2 t$ where $y(0)=4, y^{\prime}(0)=-2$.
19. Express $f(x)=(\pi-x)^{2}$ as a Fourier series of period 2π in the interval $0<x<2 \pi$. Hence deduce the sum of the series $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots$
20. (a) Solve $p^{2}+q^{2}=x^{2}+y^{2}$.
(b) Find the residue at $\mathrm{z}=0$ of the function $f(z)=\frac{1}{z+z^{2}}$
(c) Prove that the limit of a function is unique.
