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SECTION – A 
ANSWER ALL QUESTIONS:                               (10x2=20) 
 

1. Form the partial differential equation by eliminating the arbitrary constants from 

 . 

2. Find the complete integrals of the equation  . 

3. Find . 

4. Find 1
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5. Find the Fourier coefficient a0 for the function     ,       . 

6. Find the half range sine series for the function     in the interval 0, . 

7. If ( ) ( )f z and f z  are analytic in a region. Show that   is constant in that region. 

8. Show that 3  is a harmonic function.  

9. Find the Taylor`s series for  about  1. 

10. Find the order of the pole 0 in the relation  3
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SECTION-B 

ANSWER ANY FIVE QUESTIONS:               (5x8=40) 
 

11. Form the partial differential equation by eliminating the arbitrary function  from the 

relation , . 
12. Solve . 

13. Find   2    .  
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14. Find the Fourier series for the function    =                

      
  

15. Show that the function ,     is harmonic. Find its harmonic conjugate 

,  and the analytic function. 

16. Let  be an analytic function. Prove that its real and imaginary parts are harmonic.  

17. Find the residues of  
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 at the poles 1 and  2 . 

           
SECTION-C 

ANSWER ANY TWO QUESTIONS:       (2x20=40) 
 

18. (a) Solve      –     –  . 

(b) Using Laplace transform solve 2  where  0  4, 0  2. 

  

19. Express    as a Fourier series of period 2  in the interval 

0  2 . Hence deduce the sum of the series 2 2 2
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20. (a) Solve  . 

(b) Find the residue at z = 0 of the function  2
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            (c) Prove that the limit of a function is unique. 
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