Scheme of Valuation / Solution

B.Sc. Physics - Thermal Physics and Statistical Mechanics - 11PH /MC /TS 24

Section - A (1 mark each) - Time: 30 minutes
I - Choose the correct Answer (Multiple choice Q's)

1. D
2. C
3. B
4. D
5. B
6. C
7. D
8. B
9. C
10. A
11. A
12. B
13. C
14. D
15. A

II - Fill-in the blanks
16. Nine (9)
17. Increases
18. The Reciprocal of square
19. Decrease
20. $|W| /\left|Q_{H}\right|$

III - True (or) False
21. False
22. True
23. False
24. False
25. True

IV - Answer Briefly
26. $G=H-T S, H$ - enthalpy, T - temperature, S - entropy (1/2 mark); during change of phase, G remains constant (1/2 mark)
27. the coefficient of performance of a reversible refrigerator equals to the ratio of heat extracted from cold reservoir to the work done on refrigerant $=\left|Q_{c}\right| /|W|$
28. $\mathrm{d} Q=\mathrm{d} U+\mathrm{d} W-$ first law, $\mathrm{d} Q=T \mathrm{~d} S$, for a reversible process - second law; therefore, $T \mathrm{~d} S=\mathrm{d} U+\mathrm{d} W$ (1/2 mark); explanation of symbols (1/2 mark)
29. Book work - any one of 3 statements
30. A collection of systems with different microstructure (microstate) but representing the same macrostate ($1 / 2$ mark); types: microcanonical, canonical and grandcanonical(1/2 mark)

Section - B (Any Five, 5 marks each) (Time: $2 \frac{1}{2}$ hrs for Secs. B and C)

1. $\quad \eta=(1 / 3) m v / \sigma$; mean speed $v=\sqrt{ }(8 k T / \pi m)$ and $\sigma=\pi d^{2}$, where d = diameter of molecule, $k=$ Boltzmann constant, m-mass of molecule, T-temperature. Taking $T=300 \mathrm{~K}$ and $\mathrm{m}=$ $(12+32) \mathrm{amu} ; 1 \mathrm{amu}=1.67 \times 10^{-27} \mathrm{~kg}$, substituting the values, we obtain $d=0.45 \mathrm{~nm}$
2. i) reversible, isothermal expansion: $P V=$ constant, so final volume $V_{f}=32 \mathrm{~m}^{3}$, temperature remains constant $=400 \mathrm{~K}$, work done $=R T \log \left(V_{f}-V_{i}\right)=6.7 \times 10^{6} \mathrm{~J}$, heat absorbed = work done and hence change in internal energy is zero (2 $1 / 2$ marks);
ii) reversible, adiabatic process: $P V^{\gamma}=$ constant, γ - ratio of specific heats $=5 / 3$, final volume $V_{f}=13.9 \mathrm{~m}^{3}, \mathrm{~T}=174 \mathrm{~K}$, work done $=\left(P_{\mathrm{i}} V_{\mathrm{i}}-P_{\mathrm{f}} V_{\mathrm{f}}\right) /(\gamma-1)=2.74 \times 10^{6} \mathrm{~J}$, heat absorbed $=$ zero and change in internal energy $=-2.74 \times 10^{6} \mathrm{~J}$
($21 / 2$ marks)
3. Entropy change for water at $273\left(T_{1}\right)$ to $373 \mathrm{~K}\left(T_{2}\right) \Delta S_{1}=c_{\mathrm{P}} \log \left(T_{2} / T_{1}\right)=1310 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ ($21 / 2$ marks), entropy change for change of state $\Delta S_{2}=\ell / T_{2}=6060$, so total change $=7370 \mathrm{~J}$ $\mathrm{kg}^{-1} \mathrm{~K}^{-1}$ ($21 / 2$ marks)
4. Direct application of Clausius-Clapeyon equation: $\mathrm{d} T=T\left(V_{\mathrm{f}}-V_{\mathrm{i}}\right) \mathrm{dP} / \ell=0.03 \mathrm{~K}$
5. $\mathrm{N}=3 ; \mathrm{g}_{1}=3, \mathrm{~N}_{1}=2 ; \mathrm{g}_{2}=2, \mathrm{~N}_{2}=1 ; \quad W(\mathrm{~B}-\mathrm{E})=\left(g_{\mathrm{j}}+N_{\mathrm{j}}-1\right)!/\left(g_{\mathrm{j}}-1\right)!N_{\mathrm{j}}!=12$
and $\quad W($ F-D $)=g_{\mathrm{j}}!/\left(g_{\mathrm{j}}-N_{\mathrm{j}}\right)!N_{\mathrm{j}}!=6$
6. Standard Book work
7. Standard Book work

Section - C (Any Three, 15 marks each)

1. Text Book Material, a) 3 marks for assumptions and 6 marks for derivation b) 3 marks for each deduction
2. Text Book Material, 2 marks for the principle; description of refrigeration cycle with a neat diagram - 10 marks; 3 marks for coefficient of performance
3. Text Book Material, a) 2 marks for each statement; b) 1 mark for definition and 4 marks for derivation using ideal gas in Carnot cycle; c) 3 marks each for the two derivations
4. Standard Text Book Material, 8 marks for theory and 7 marks for experiment
5. Stand Text ook Material, a) 6 marks for the derivation; b) 3 marks each for the three deivations
