STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE : MT/MO/DM54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2007 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE : MAJOR – OPTIONAL PAPER : DISCRETE MATHEMATICS TIME : 3 HOURS

MAX. MARKS: 100

SECTION – A

(10 X 2 = 20)

ANSWER ALL THE QUESTIONS

- 1. Define conditional statement.
- 2. Verify whether $(p \land (p \leftrightarrow q)) \rightarrow q$ is a tautology.
- 3. Obtain the PDNF for \neg PVQ.
- 4. Define a chain and give an example.
- 5. Define a finite automaton.
- 6. Construct an finite automaton accepting all strings in $\{0,1\}$ having even number of 0's and even number of 1's.
- 7. Show that any finite subset is regular.
- 8. Define finite state machine.
- 9. Define phrase-structure grammar.
- 10. Write the grammar for GNF.

SECTION – B

(5X8=40)

ANSWER ANY FIVE QUESTIONS

- 11. a) Obtain a disjunctive normal form of $\neg (P \lor Q) \leftrightarrow (P \land Q)$.
 - b) Show that $R \rightarrow S$ can be derived from the premises.
- 12. a) show that even chain is a lattice.b) Show that any chain is modular.
- 13. If L be the set accepted by an NFA, M, show that there exists an FA, M' which accepts L.
- 14. Find FA, M such that T(M) is the set of all strings over $\{0,1\}$ ending in 10.
- 15. State and prove Pumping Lemma.
- 16. Find a grammar in CNF equivalent to a grammar whose productions are $S \rightarrow aAbB$, $A \rightarrow aA/a$, $B \rightarrow bB/b$.
- 17. Every context-free language L can be generated by a CFG in GNF. Prove.

SECTION – C

(2X20=40)

ANSWER ANY TWO QUESTIONS

- 18. a) Obtain the principle disjunctive normal form of $P \rightarrow ((P \rightarrow Q) \land \neg (\neg Q \lor \neg P)).$
 - b) Show that $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (Fx)Q(x)$.
- a) Prove that a lattice L is modular if and only if none of its sublattices is isomorphic to the pentagon lattice N₅.
 - b) Find the principal disjunctive normal form of

$$p(x_1, x_2, x_3) = (x_2 + x_1 x_3) \overline{((x_1 + x_3) x_2)}$$

20. State and prove Chomsky Normal form.
