STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600086 (For candidates admitted during the academic year 2004-05 \& thereafter)

SUBJECT CODE : MT/MO/DM54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2007
 BRANCH I - MATHEMATICS
 FIFTH SEMESTER

COURSE : MAJOR - OPTIONAL
PAPER : DISCRETE MATHEMATICS
TIME : 3 HOURS
MAX. MARKS : 100
SECTION - A
($10 \times 2=20$)

ANSWER ALL THE QUESTIONS

1. Define conditional statement.
2. Verify whether $(p \wedge(p \leftrightarrow q)) \rightarrow q$ is a tautology.
3. Obtain the PDNF for $\neg \mathrm{PVQ}$.
4. Define a chain and give an example.
5. Define a finite automaton.
6. Construct an finite automaton accepting all strings in $\{0,1\}$ having even number of 0 's and even number of 1 's.
7. Show that any finite subset is regular.
8. Define finite state machine.
9. Define phrase-structure grammar.
10. Write the grammar for GNF.

> SECTION - B

ANSWER ANY FIVE QUESTIONS

11. a) Obtain a disjunctive normal form of $\neg(P \vee Q) \leftrightarrow(P \wedge Q)$.
b) Show that $R \rightarrow S$ can be derived from the premises.
12. a) show that even chain is a lattice.
b) Show that any chain is modular.
13. If L be the set accepted by an NFA, M, show that there exists an FA, M' which accepts L.
14. Find $F A, M$ such that $T(M)$ is the set of all strings over $\{0,1\}$ ending in 10 .
15. State and prove Pumping Lemma.
16. Find a grammar in CNF equivalent to a grammar whose productions are $S \rightarrow a A b B, A \rightarrow a A / a, B \rightarrow b B / b$.
17. Every context-free language L can be generated by a CFG in GNF. Prove.

SECTION - C

$(2 \times 20=40)$

ANSWER ANY TWO QUESTIONS

18. a) Obtain the principle disjunctive normal form of

$$
P \rightarrow((P \rightarrow Q) \wedge \neg(\neg Q \vee \neg P))
$$

b) Show that $(\forall x)(P(x) \vee Q(x)) \Rightarrow(\forall x) P(x) \vee(F x) Q(x)$.
19. a) Prove that a lattice L is modular if and only if none of its sublattices is isomorphic to the pentagon lattice N_{5}.
b) Find the principal disjunctive normal form of

$$
p\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}+x_{1} x_{3}\right) \overline{\left.\left(x_{1}+x_{3}\right) x_{2}\right)}
$$

20. State and prove Chomsky Normal form.
