STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI 600 086 (For candidates admitted during the academic year 2004 – 05 & thereafter)

SUBJECT CODE : MT/MC/RD54

B. Sc. DEGREE EXAMINATION, NOVEMBER 2007 BRANCH I - MATHEMATICS FIFTH SEMESTER

COURSE PAPER	 MAJOR – CORE RANDOM VARIABLES AND THEORETICAL DISTRIBUT 		
TIME	: 3 HOURS	MAX. MARKS : 100	

SECTION – A (10X2=20)

ANSWER ALL THE QUESTIONS

- 1. State the axiomatic definition of probability.
- 2. Two dice are thrown. Find the probability that both the dice show the same number.
- 3. A, B and C are three mutually exclusive and exhaustive events associated with a random experiment. Find P(A) given that, $P(B) = \frac{3}{2}P(A)$ and $P(C) = \frac{1}{2}P(B)$.
- 4. Define discrete and continuous distribution functions.
- 5. Verify whether the following is a distribution function:

$$F(x) = \begin{cases} 0 & \text{if } x < -a \\ \frac{1}{2} \left(\frac{x}{a} + 1 \right) & \text{if } -a \le x \le a \\ 1 & \text{if } x > a \end{cases}$$

- 6. State any two properties of a m.g.f.
- 7. State the uniqueness theorem.
- 8. Derive the m.g.f of a Poisson distribution.
- 9. If X is uniformly distributed with mean 1 and variance $\frac{4}{3}$, find P[X<0].
- 10. Define a normal distributon.

SECTION – B (5x8=40)

ANSWER ANY FIVE QUESTIONS

11. State and prove Tchebyshev's inequality.

?

i) $P[X \le 1, Y = 2]$		Y = 2] i	ii) $P[X \le 1]$ iii) H		$P[Y \le 3]$	iv) $P[X < 3, Y \le 4]$.	
X Y							
	Λ	1	2	3	4	5	6
	0	0	0	$\frac{1}{32}$	$\frac{2}{32}$	2/32	$\frac{3}{32}$
	1	1/16	1/16	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
	2	$\frac{1}{32}$	1/32	1/64	1/64	0	2/64

12. Given the following bivariate probability distribution, find

13. If $X_1, X_2, ..., X_n$ are random variables then show that

> $V\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} a_i^2 V(X_i) + 2\sum_{i=1}^{n} \sum_{i=1}^{n} a_i a_j \operatorname{cov}(X_i, X_j)$. Deduce the result for independent random variables.

14. Let the random variable X have the distribution P[X = 0] = P[X = 2] = p;

$$P[X = 1] = 1 - 2p$$
 for $0 \le p \le \frac{1}{2}$. For what value of p is the var X a maximum

- 15. Derive the recurrence relation for moments of the Poisson distribution.
- 16. Find p for a Binomial variate X if n = 6 and 9 p[X = 4] = p[X = 2]
- 17. What are the chief characteristics of normal distribution?

SECTION – C (2x20=40)

ANSWER ANY TWO QUESTIONS

- 18. a) State and prove Baye's theorem on inverse probability.
 - b) An urn contains four tickets marked with numbers 112, 121, 211, 222 and one ticket is drawn at random. Let A_i , i = 1, 2, 3 be the event that the ith digit of the number on the ticket is 1. Discuss the independence of the events A1, A2 and A₃.
- 19. a) Show that the correlation coefficient is independent of change of origin and scale.

b) A discrete random variate X takes the values -1, 0, 1 with probability $\frac{1}{8}, \frac{3}{4}, \frac{1}{8}$ respectively. Evaluate $p[|X - \mu| \ge 2\sigma]$ and compare it with the upper bound given by Tchebyshev's inequality..

- 20. a) Derive the median and mode of normal distribution.
 - b) The mean yield for one-acre plot is 662 kilos with a standard deviation 32 kilos. Assuming normal distribution, how many one-acre plots in a batch of 1000 plots, would you expect to have yield i) over 700 kilos and ii) below 650 kilos.