STELLA MARIS COLLEGE (AUTONOMOUS) CHENNAI - 600 086 (For candidates admitted from the academic year 2004- 05 & thereafter)

SUBJECT CODE : MT/MO/BN24

B. Sc. DEGREE EXAMINATION, APRIL 2007 BRANCH I – MATHEMATICS SECOND SEMESTER

COURSE	: MAJOR OPTIONAL	
PAPER	: BASICS OF NUMBER THEORY	
TIME	: 3 HOURS	MAX. MARKS: 100

SECTION – A

ANSWER ALL QUESTIONS:

(10 X 2 = 20)

- 1. Define the gcd of integers
- 2. List the prime numbers between 50 and 100.
- 3. If a/bc and if (a,b)=1 prove that a/c.
- 4. Write down a formula for (a,b) using the prime power factorization of 'a' and 'b'.
- 5. Use the Euclidean Algorithm to find (360,294)
- 6. Find $\varphi(960)$.
- 7. Define the Mobius Function $\mu(n)$. Write down $\mu(7)$.
- 8. If $ac \equiv bc \pmod{m}$, does it imply $a \equiv b \pmod{m}$. Justify.
- 9. Find the quadratic residues modulo 7.
- 10. State the Law of Quadratic Reciprocity.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

(5 X 8 = 40)

- 11. If f and g are multiplicative, prove that their Dinichlet product is also multiplicative.
- 12. State and prove the Euler Format Theorem.
- 13. If (562,216) = d, express 'd' as an integer linear combination of the 2 numbers 562 and 216, using the Euclidean Algorithm.
- 14. State and prove Lagrange's theorem on Polynomial congruences modulo p.
- 15. State and prove Wilson's Theorem.
- 16. Solve: $9x \equiv 12 \pmod{21}$

17. Prove that
$$\left(\frac{2}{p}\right) = (-1)^{\left(\frac{p^2-1}{8}\right)} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{8} \\ -1 & \text{if } p \equiv \pm 3 \pmod{8} \end{cases}$$

SECTION – C

ANSWER ANY TWO QUESTIONS: $(2 \times 20 = 40)$

- a) State and prove the Euclidean Algorithm.
 - b) If $n \ge 1$, prove that $\sum_{d/n} \varphi(d) = n$
 - c) Let f be multiplicative, prove that f is completely multiplicative if and only if $f^{-1}(n) = \mu(n)f(n)$ for all $n \ge 1$.

(6+6+8)

- 19. a) Prove that the linear congruence $ax \equiv b \pmod{m}$ where (a, m) = d has solutions iff d/b.
 - b) Using the Chinese Remainder Theorem, solve the following system of congruences.
 - $x = 1 \pmod{11}$ $x = 2 \pmod{12}$ $x = 3 \pmod{13}$

(8+12)

20. a) Let p be an odd prime. Then for all n, prove that Legendre Symbol

$$(n/p) \equiv n^{\left(\frac{p-1}{2}\right)} \pmod{p}.$$

b) State and prove Gauss' Lemma. (8+12)